No. 9]

79. A Class of Inclusion Theorems Associated with Some Fractional Integral Operators¹⁰

By Yong Chan KIM,*' Young Soo PARK,**' and H. M. SRIVASTAVA***'

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1991)

In the present paper the authors prove several inclusion theorems for some interesting subclasses of analytic functions involving a certain family of fractional integral operators. The corresponding results for the Hardy space \mathcal{H}^p (0) follow as corollaries of these theorems. Some applications to the generalized hypergeometric functions are also considered.

1. Introduction. Let \mathcal{A} denote the class of functions f(z) normalized by

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disk

$$\mathcal{U} = \{z : |z| < 1\}.$$

Definition 1. A function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{R}(\gamma)$ if it satisfies the inequality:

 $\operatorname{Re}\{f'(z)\} > \gamma \quad (z \in \mathcal{U}; 0 \leq \gamma < 1).$

The class $\mathcal{R}(0)$ was studied systematically by MacGregor [6] who indeed referred to numerous earlier investigations involving functions whose derivative has a positive real part. Various interesting subclasses of \mathcal{A} associated with the class $\mathcal{R}(\gamma)$ were considered elsewhere by (among others) Sarangi and Uralegaddi [11], Owa and Uralegaddi [8], and Srivastava and Owa [12].

Let \mathcal{T} be the subclass of \mathcal{A} consisting of functions of the form :

(1.2)
$$f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n$$

and denote by $\Re^*(\gamma)$ the class obtained by taking the intersection of the classes $\Re(\gamma)$ and \mathcal{T} ; that is,

(1.3)
$$\mathscr{R}^*(\gamma) = \mathscr{R}(\gamma) \cap \mathscr{T} \quad (0 \leq \gamma < 1).$$

Finally, let $\mathcal{H}^p(0 \le p \le \infty)$ denote the Hardy space of analytic functions f(z) in \mathcal{U} , and define the integral means $M_p(r, f)$ by

^{†)} 1991 Mathematics Subject Classification. Primary 30C45, 26A33; Secondary 33C20, 30H05.

^{*)} Department of Mathematics, College of Education, Yeungnam University, Korea.

^{**)} Department of Mathematics, College of Natural Sciences, Kyungpook National University, Korea.

^{***)} Department of Mathematics and Statistics, University of Victoria, Canada.