78. A Note on the Class-number of Real Quadratic Fields with Prime Discriminants

By Hideo Yokoi

College of General Education, Nagoya University

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1991)

Introduction. In recent papers [6], [7], [8], we defined some new integer-valued p-invariants for any rational prime p congruent to 1 mod 4 and studied relationships among them. In particular, we defined in [6] the new p-invariant n_p by

$$|t_p/u_p^2-n_p| < 1/2$$

through the fundamental unit

$$\varepsilon_p = (t_p + u_p \sqrt{p})/2 \quad (>1)$$

of real quadratic field $Q(\sqrt{p})$ with prime discriminant, which turned out to be very useful as far as $n_p \neq 0$ (i.e. $2t_p > u_p^2$).

In this paper, we shall introduce some more new p-invariants q_p , r_p , r_p^* , a_p , b_p and provide lower bounds for the class-number h_p of $Q(\sqrt{p})$ (Theorems 1, 2). Moreover, we shall show that if $Q(\sqrt{p})$ is of R-D type and $h_p=1$, 3 or 5, then n_p has certain simple multiplicative structures (Theorem 3).

§ 1. We first prove the following theorem which is fundamental throughout this paper, providing a lower bound for the class-number h_p of real quadratic field $Q(\sqrt{p})$ with prime discriminant.

Theorem 1. For any prime p congruent to $1 \mod 4$, we denote by q_p the least prime number which splits completely in $Q(\sqrt{p})$, i.e. $(p/q_p)=1$, where $(\ /\)$ means Legendre's symbol.

Then if $n_p \neq 0$, $h_p \geq \log n_p / \log q_p$ holds.

Proof. In the case $q_p \neq 2$, we proved this already in [6]. In the case $q_p = 2$, we can prove the following lemma in a similar way as in Lemma 2 in [6]:

Lemma. For any square-free positive integer D congruent to $1 \mod 8$, we denote by e the order of prime factors of 2 in the ideal class group of $Q(\sqrt{D})$.

Then, the diophantine equation $x^2 - Dy^2 = \pm 4 \cdot 2^e$ has at least one non-trivial solution, while for any integer e' such that $1 \le e' < e$ the diophantine equation $x^2 - Dy^2 = \pm 4 \cdot 2^{e'}$ has no non-trivial integral solution.

By using this lemma together with Lemma 1 in [6], in a similar way as in the proof of Theorem in [6] we can prove

$$q_p = 2$$
 and $h_p \ge \log n_p / \log 2$

for any prime $p \equiv 1 \mod 8$.

We next provide a lower bound r_p for the class-number of $Q(\sqrt{p})$