76. On the Asymptotic Remainder Estimate for the Eigenvalues of Operators Associated with Strongly Elliptic Sesquilinear Forms

By Yôichi Miyazaki
School of Dentistry, Nihon University
(Communicated by Shokichi Iyanaga, m. J. A., Nov. 12, 1991)

§ 1. Introduction and main result. This present note is devoted to the supplementary result to be added to the previous paper [5].

Let Ω be a bounded domain in the n-dimensional Euclidean space \boldsymbol{R}^{n}. For a nonnegative integer m and $p>1$ we denote by $W_{p}^{m}(\Omega)$ with the norm $\left\|\|_{m, p}\right.$ the space of functions whose distributional derivatives of order up to m belong to $L_{p}(\Omega)$, and by $W_{p, 0}^{m}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W_{p}^{m}(\Omega)$. In particular we set $H^{m}(\Omega)=W_{2}^{m}(\Omega),\| \|_{m}=\| \|_{m, 2}$ and $H_{0}^{m}(\Omega)=W_{2,0}^{m}(\Omega)$. Let B be an integro-differential symmetric sesquilinear form of order m with bounded coefficients :

$$
\begin{aligned}
B[u, v] & =\int_{\Omega|\alpha|,|\beta| \leq m} a_{\alpha \beta}(x) D^{\alpha} u(x) \overline{D^{\beta} v(x)} d x, \\
\alpha & =\left(\alpha_{1}, \cdots, \alpha_{n}\right), \quad D^{\alpha}=(-\sqrt{-1})^{|\alpha|}\left(\partial / \partial x_{1}\right)^{\alpha_{1}} \cdots\left(\partial / \partial x_{n}\right)^{\alpha_{n}},
\end{aligned}
$$

which is coercive on $H_{0}^{m}(\Omega)$:

$$
B[u, u] \geqq \delta\|u\|_{m}^{2}-C_{0}\|u\|_{0}^{2}, \quad \delta>0, \quad C_{0} \geqq 0 \quad \text { for any } u \in H_{0}^{m}(\Omega) .
$$

Let A be the operator associated with the variational triple $\left\{B, H_{0}^{m}(\Omega), L_{2}(\Omega)\right\}$. That is, $u \in H_{0}^{m}(\Omega)$ belongs to $D(A)$, the domain of A if and only if there exists $f \in L_{2}(\Omega)$ such that $B[u, v]=(f, v)_{L_{2}(\Omega)}$ for any $v \in H_{0}^{m}(\Omega)$ and we define $A u=f$. As is known, A is a self-adjoint operator and the spectrum of A consists of eigenvalues accumulating only at $+\infty$. For a real number t let $N(t ; A)$ or simply $N(t)$ denote the number of eigenvalues of A not exceeding t. We put

$$
\begin{aligned}
& a(x, \xi)=\sum_{|\alpha|=|\beta|=m} a_{\alpha \beta}(x) \xi^{\alpha+\beta}, \\
& \mu_{A}(x)=(2 \pi)^{-n} \int_{a(x, \xi)<1} d \xi, \quad \mu_{A}(\Omega)=\int_{\Omega} \mu_{A}(x) d x .
\end{aligned}
$$

For $\tau=k+\sigma>0$ with an integer k and $0<\sigma \leqq 1$ let $\mathscr{B}^{\tau}(\Omega)$ denote the space of functions u in Ω such that $D^{\alpha} u$ are bounded and continuous for $|\alpha| \leqq k$ and $\left|D^{\alpha} u(x)-D^{\alpha} u(y)\right| /|x-y|^{\alpha}(x, y \in \Omega, x \neq y)$ are bounded for $|\alpha|=k$.

In [5] we investigated the remainder estimate in the asymptotic formula for the eigenvalues of A with $a_{\alpha \beta} \in \mathcal{B}^{\tau}(\Omega) \quad(|\alpha|=|\beta|=m)$ for $\tau>0$. But we could not give any assertion for $0<\tau<m$ when $2 m \leqq n$. In this note we settle this case.

Theorem. Let $\tau>0$. Suppose that $a_{\alpha \beta} \in \mathscr{B}^{r}(\Omega)(|\alpha|=|\beta|=m)$ and that the boundary $\partial \Omega$ is in $C^{2 m}$-class. Then we have

$$
N(t)=\mu_{A}(\Omega) t^{n / 2 m}+O\left(t^{(n-\theta) / 2 m}\right) \quad \text { as } t \rightarrow \infty,
$$

