69. A New One-parameter Family of 2×2 Quantum Matrices

By Mitsuhiro TAKEUCHI*) and Daisuke TAMBARA**)

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 14, 1991)

We introduce a new one-parameter family of quadratic braided 2×2 matrix bialgebras $B_q(2)$. We work over the complex numbers C. All proofs of this announcement will be included in [5]. The main results were also announced at the AMS San Fransisco meeting in January 1991.

We start with the following R-matrix. Let q be a complex number.

$$egin{aligned} R_q =& igg[1 - rac{(q-1)^2}{2} igg] e_{_{11}} \otimes e_{_{11}} + igg[1 - rac{(q+1)^2}{2} igg] e_{_{22}} \otimes e_{_{22}} \ &+ rac{(q-1)^2}{2} e_{_{12}} \otimes e_{_{12}} + rac{(q+1)^2}{2} e_{_{21}} \otimes e_{_{21}} \ &+ rac{1 - q^2}{2} (e_{_{11}} \otimes e_{_{22}} + e_{_{22}} \otimes e_{_{11}}) + rac{1 + q^2}{2} (e_{_{12}} \otimes e_{_{21}} + e_{_{21}} \otimes e_{_{12}}) \end{aligned}$$

where e_{ij} denote the matrix units. A tedious verification shows that R_q satisfies the Yang-Baxter equation (or the braid condition)

 $(I \otimes R_q)(R_q \otimes I)(I \otimes R_q) = (R_q \otimes I)(I \otimes R_q)(R_q \otimes I).$ Further we have $(R_q - I)(R_q + q^2I) = 0$ and when $q \neq 0$, $q^2 \neq -1$, R_q is diagonal with two two-dimensional eigenspaces.

Definition 1. Assume $q \neq 0$, $q^2 \neq -1$. Let $B_q(2)$ be the *C*-algebra defined by generators a, b, c, d and the following relations

(1) ad = da, (2) bc = cb, (3) $ab - \hat{q}ba = (1 - \hat{q})cd$,

(4) $dc + \hat{q}cd = (1 + \hat{q})ba$, (5) $ac - \hat{q}ca = -(1 + \hat{q})bd$,

(6) $db + \hat{q}bd = -(1-\hat{q})ca$, (7) $a^2 + b^2 = c^2 + d^2$,

(8) $(1+\hat{q})b^2 = (\hat{q}-1)c^2$,

where $\hat{q} = \frac{q+q^{-1}}{2}$.

The above relations are equivalent to saying that the matrix $X \otimes X$ with $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, commutes with R_q . Hence the algebra $B_q(2)$ has a bialgebra structure with comultiplication

$$\varDelta \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a \otimes 1 & b \otimes 1 \\ c \otimes 1 & d \otimes 1 \end{pmatrix} \begin{pmatrix} 1 \otimes a & 1 \otimes b \\ 1 \otimes c & 1 \otimes d \end{pmatrix}.$$

The bialgebra $B_q(2)$ is braided by [2] or [1].

Proposition 2. Assume $q \neq 0$, $q^4 \neq 1$. Let

$$f = \frac{1}{2}(a+d), \quad g = \frac{1}{2}(a-d), \quad s = \frac{1}{2}(q_{-}b+q_{+}c), \quad t = \frac{1}{2}(q_{-}b-q_{+}c)$$

where $q_{\pm} = (\sqrt{q} \pm \sqrt{q}^{-1})^{-1}$.

*) University of Tsukuba.

**) Hirosaki University.