69. A New One-parameter Family of $\mathbf{2} \times 2$ Quantum Matrices

By Mitsuhiro Takeuchi*) and Daisuke Tambara**)
(Communicated by Shokichi Iyanaga, m. J. A., Oct. 14, 1991)

We introduce a new one-parameter family of quadratic braided 2×2 matrix bialgebras $B_{q}(2)$. We work over the complex numbers C. All proofs of this announcement will be included in [5]. The main results were also announced at the AMS San Fransisco meeting in January 1991.

We start with the following R-matrix. Let q be a complex number.

$$
\begin{aligned}
R_{q}= & {\left[1-\frac{(q-1)^{2}}{2}\right] e_{11} \otimes e_{11}+\left[1-\frac{(q+1)^{2}}{2}\right] e_{22} \otimes e_{22} } \\
& +\frac{(q-1)^{2}}{2} e_{12} \otimes e_{12}+\frac{(q+1)^{2}}{2} e_{21} \otimes e_{21} \\
& +\frac{1-q^{2}}{2}\left(e_{11} \otimes e_{22}+e_{22} \otimes e_{11}\right)+\frac{1+q^{2}}{2}\left(e_{12} \otimes e_{21}+e_{21} \otimes e_{12}\right)
\end{aligned}
$$

where $e_{i j}$ denote the matrix units. A tedious verification shows that R_{q} satisfies the Yang-Baxter equation (or the braid condition)

$$
\left(I \otimes R_{q}\right)\left(R_{q} \otimes I\right)\left(I \otimes R_{q}\right)=\left(R_{q} \otimes I\right)\left(I \otimes R_{q}\right)\left(R_{q} \otimes I\right)
$$

Further we have $\left(R_{q}-I\right)\left(R_{q}+q^{2} I\right)=0$ and when $q \neq 0, q^{2} \neq-1, R_{q}$ is diagonal with two two-dimensional eigenspaces.

Definition 1. Assume $q \neq 0, q^{2} \neq-1$. Let $B_{q}(2)$ be the C-algebra defined by generators a, b, c, d and the following relations
(1) $a d=d a$,
(2) $b c=c b$,
(3) $a b-\hat{q} b a=(1-\hat{q}) c d$,
(4) $d c+\hat{q} c d=(1+\hat{q}) b a$,
(5) $a c-\hat{q} c a=-(1+\hat{q}) b d$,
(6) $d b+\hat{q} b d=-(1-\hat{q}) c a$, (7) $a^{2}+b^{2}=c^{2}+d^{2}$,
(8) $(1+\hat{q}) b^{2}=(\hat{q}-1) c^{2}$,
where $\hat{q}=\frac{q+q^{-1}}{2}$.
The above relations are equivalent to saying that the matrix $X \otimes X$ with $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, commutes with R_{q}. Hence the algebra $B_{q}(2)$ has a bialgebra structure with comultiplication

$$
\Delta\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a \otimes 1 & b \otimes 1 \\
c \otimes 1 & d \otimes 1
\end{array}\right)\left(\begin{array}{ll}
1 \otimes a & 1 \otimes b \\
1 \otimes c & 1 \otimes d
\end{array}\right)
$$

The bialgebra $B_{q}(2)$ is braided by [2] or [1].
Proposition 2. Assume $q \neq 0, q^{4} \neq 1$. Let

$$
f=\frac{1}{2}(a+d), \quad g=\frac{1}{2}(a-d), \quad s=\frac{1}{2}\left(q_{-} b+q_{+} c\right), \quad t=\frac{1}{2}\left(q_{-} b-q_{+} c\right)
$$

where $q_{ \pm}=\left(\sqrt{q} \pm \sqrt{q^{-1}}\right)^{-1}$.

[^0]
[^0]: *) University of Tsukuba.
 **) Hirosaki University.

