# 7. A Note on the Problem of Yokoi 

By Shin-ichi Katayama*) and Shigeru Katayama**)

(Communicated by Shokichi Iyanaga, m. J. A., Jan. 14, 1991)

Let $p$ be a prime congruent to $1 \bmod 4$ and $\varepsilon_{p}=(t+u \sqrt{p}) / 2>1$ be the fundamental unit of $\boldsymbol{Q}(\sqrt{p})$. From Theorem 1 of [1], there exist only a finite number of real quadratic fields $\boldsymbol{Q}(\sqrt{ } \bar{p})$ with class number one for any fixed positive integer $u$. The problem of enumerating these fields for the cases $u=1$ and $u=2$ was solved by H. K. Kim, M.-G. Leu and T. Ono ([2]).

In this paper, we shall determine all these fields for $1 \leqq u \leqq 300$ in proving the following theorem.

Theorem. With the above notation, there exist at most 44 real quadratic fields $\boldsymbol{Q}(\sqrt{p})$ with class number one for $1 \leqq u \leqq 300$, where $p$ are those in Table II with one possible exception.

Proof. Let $\chi_{p}$ be the Kronecker character belonging to $\boldsymbol{Q}(\sqrt{p})$ and $L\left(s, \chi_{p}\right)$ be the corresponding $L$-series. Then by Theorem 2 of [4], for any $y \geqq 12$, we have

$$
L\left(1, \chi_{p}\right)>\frac{0.655}{y} p^{-1 / y}
$$

with one possible exception of $p$, where $y=\log p$.
Further, from class number formula, for any $e^{y} \leqq p$ ( $y \geqq 12$ ), we have

$$
\begin{aligned}
h(p) & =\frac{\sqrt{p}}{2 \log \varepsilon_{p}} L\left(1, \chi_{p}\right) \\
& >\frac{0.655}{y} \frac{\sqrt{p} p^{-1 / y}}{2 \log (u \sqrt{p})}=\frac{0.655}{y} \frac{p^{(y-2) / 2 y}}{2 \log u+\log p} \\
& \geqq \frac{0.655 e^{(y-2) / 2}}{y(y+2 \log u)} .
\end{aligned}
$$

Thus $h(p)=1$ implies
(1)

$$
0.655 e^{(y-2) / 2} \leqq y(y+2 \log u)
$$

Put for convenience

$$
g(x, y)=\frac{0.655 e^{(y / 2)-1}}{y(y+2 x)}, \text { where } x=\log u
$$

The curve $C$ in Figure 1 represents the graph of $g(x, y)=1$. The inequality (1) means that the point $(\log u, \log p)$ with $h(p)=1$ should lie in the shadowed domain in this figure. In particular, $1 \leqq u \leqq 2$ implies $1 \leqq$ $p \leqq e^{14}$ and $5 \leqq u \leqq 300$ implies $1 \leqq p \leqq e^{15}$.

Now put

$$
U=\left\{2^{r} \prod p_{i}{ }^{s_{i}} \mid r=0 \text { or } 1, p_{i} \equiv 1(\bmod 4), s_{i} \geqq 0\right\}
$$

[^0]
[^0]:    *) College of General Education, Tokushima University.
    **) College of General Education, Tokushima Bunri University.

