7. A Note on the Problem of Yokoi

By Shin-ichi KATAYAMA*) and Shigeru KATAYAMA**)

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 14, 1991)

Let p be a prime congruent to 1 mod 4 and $\varepsilon_p = (t + u\sqrt{p})/2 > 1$ be the fundamental unit of $Q(\sqrt{p})$. From Theorem 1 of [1], there exist only a finite number of real quadratic fields $Q(\sqrt{p})$ with class number one for any fixed positive integer u. The problem of enumerating these fields for the cases u=1 and u=2 was solved by H. K. Kim, M.-G. Leu and T. Ono ([2]).

In this paper, we shall determine all these fields for $1 \le u \le 300$ in proving the following theorem.

Theorem. With the above notation, there exist at most 44 real quadratic fields $Q(\sqrt{p})$ with class number one for $1 \le u \le 300$, where p are those in Table II with one possible exception.

Proof. Let χ_p be the Kronecker character belonging to $Q(\sqrt{p})$ and $L(s, \chi_p)$ be the corresponding *L*-series. Then by Theorem 2 of [4], for any $y \ge 12$, we have

$$L(1, \chi_p) > \frac{0.655}{y} p^{-1/y}$$

with one possible exception of p, where $y = \log p$.

Further, from class number formula, for any $e^{y} \leq p$ ($y \geq 12$), we have

$$h(p) = \frac{\sqrt{p}}{2 \log \varepsilon_p} L(1, \chi_p)$$

$$\geq \frac{0.655}{y} \frac{\sqrt{p} \ p^{-1/y}}{2 \log (u\sqrt{p})} = \frac{0.655}{y} \frac{p^{(y-2)/2y}}{2 \log u + \log p}$$

$$\geq \frac{0.655e^{(y-2)/2}}{y(y+2 \log u)}.$$

Thus h(p) = 1 implies

$$0.655e^{(y-2)/2} \leq y(y+2\log u).$$

Put for convenience

$$g(x, y) = \frac{0.655e^{(y/2)-1}}{y(y+2x)}$$
, where $x = \log u$.

The curve C in Figure 1 represents the graph of g(x, y)=1. The inequality (1) means that the point $(\log u, \log p)$ with h(p)=1 should lie in the shadowed domain in this figure. In particular, $1 \le u \le 2$ implies $1 \le p \le e^{14}$ and $5 \le u \le 300$ implies $1 \le p \le e^{15}$.

Now put

(1)

$$U = \{2^r \prod p_i^{s_i} | r = 0 \text{ or } 1, p_i \equiv 1 \pmod{4}, s_i \ge 0\}.$$

*) College of General Education, Tokushima University.

^{**&#}x27; College of General Education, Tokushima Bunri University.