64. An Additive Problem of Prime Numbers. II

By Akio Fujir
Department of Mathematics, Rikkyo University
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1991)

1. Introduction. We continue our study [1] on the mean value of

$$
r_{2}(n)=\sum_{m+k=n} \Lambda(m) \Lambda(k),
$$

where $\Lambda(x)=\log p$ if $x=p^{m}$ with a prime number p and an integer $m \geq 1$, and $=0$ otherwise. We put

$$
S_{2}(n)=\prod_{p \backslash n}\left(1+\frac{1}{p-1}\right) \prod_{p \nmid n}\left(1-\frac{1}{(p-1)^{2}}\right) .
$$

Then in [1] we have shown under the Riemann Hypothesis (R.H.) that

$$
\sum_{n \leq X}\left(r_{2}(n)-n S_{2}(n)\right)=O\left(X^{3 / 2}\right)
$$

Here we shall clarify the oscillating nature of the right hand side of this formula. We shall carry it out by expressing several places of the previous arguments in [1] more explicitly. As a result we shall prove the following theorem.

Theorem (Under R.H.). For $X>X_{0}$, we have

$$
\sum_{n \leq X}\left(r_{2}(n)-n S_{2}(n)\right)=-4 X^{3 / 2} \Re\left[\sum_{r>0} \frac{X^{i \gamma}}{((1 / 2)+i \gamma)((3 / 2)+i \gamma)}\right]+O\left((X \log X)^{1+(1 / 3)}\right)
$$

where γ runs over the imaginary parts of the zeros of the Riemann zeta function $\zeta(s)$.

As is seen below, another oscillating nature connected with the distribution of the zeros of $\zeta(s)$ is hidden in the remainder term

$$
O\left((X \log X)^{1+(1 / 3)}\right)
$$

although the bounded quantity

$$
G(X) \equiv \Re\left[\sum_{r>0} \frac{X^{i r}}{((1 / 2)+i \gamma)((3 / 2)+i \gamma)}\right]
$$

represents the main oscillation.
We assume R.H. throughout this article.
Some information concerning the quantity $G(X)$ will be noticed in the forthcoming article [2].
2. Proof of Theorem. We put

$$
R(y)=\sum_{n \leq y} \Lambda(n)-y \quad \text { for } y \geq 0
$$

We put $N=[X]$. Then we have

$$
\begin{aligned}
& \sum_{n \leq X} r_{2}(n)= \sum_{m \leq X} \Lambda(m)(X-m)+\sum_{2 \leq m \leq X-2} \Lambda(m)(R(X-m)-R(N-m)) \\
&+\sum_{2 \leq m \leq N-2} \Lambda(m) R(N-m)+O(\log X) \\
&= S_{1}+S_{2}+S_{3}+O(\log X), \text { say. } \\
& \text { We get first }
\end{aligned}
$$

