63. A Remark on Certain Analytic Functions

By Sang Keun LEE^{*)} and Shigeyoshi OWA^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1991)

Abstract: A class $A_p(\alpha, \beta; a, b)$ of certain analytic functions in the unit disk, which is a generalization of the class of *p*-valently starlike functions of order α and of *p*-valently convex functions of order β , is introduced. The object of the present paper is to derive a property of the class $A_p(\alpha, \beta; a, b)$.

1. Introduction. Let A_p denote the class of functions of the form

(1.1)
$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \qquad (p \in N = \{1, 2, \cdots\})$$

which are analytic in the unit disk $U = \{z : |z| < 1\}$. A function $f(z) \in A_p$ is said to be *p*-valently starlike of order α if it satisfies

(1.2)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \quad (z \in U)$$

for some α $(0 \le \alpha < p)$. We denote by $S_p^*(\alpha)$ the subclass of A_p consisting of functions which are *p*-valently starlike of order α in *U*. A function $f(z) \in A_p$ is said to be *p*-valently convex of order β if it satisfies

(1.3)
$$\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \beta \qquad (z \in U)$$

for some β ($0 \le \beta < p$). Also we denote by $K_p(\beta)$ the subclass of A_p consisting of all such functions.

Some subclasses of *p*-valent functions were recently studied by Nunokawa ([1], [2]), Owa ([3], [4]), Owa and Ren [5], Owa and Yamakawa [6], and Saitoh [7].

With the help of the classes $S_p^*(\alpha)$ and $K_p(\beta)$, we introduce the subclass $A_p(\alpha, \beta; a, b)$ of A_p consisting of functions which satisfy

(1.4)
$$\operatorname{Re}\left\{\left(\frac{zf'(z)}{f(z)} - \alpha\right)^{a} \left(1 + \frac{zf''(z)}{f'(z)} - \beta\right)^{b}\right\} > 0 \qquad (z \in U)$$

for some α ($0 \le \alpha < p$), β ($0 \le \beta < p$), $a \in R$ and $b \in R$, where R means the set of all real numbers.

Note that $A_p(\alpha, \beta; 1, 0) = S_p^*(\alpha)$ and $A_p(\alpha, \beta; 0, 1) = K_p(\beta)$. Therefore $A_p(\alpha, \beta; \alpha, b)$ is a generalization of $S_n^*(\alpha)$ and $K_n(\beta)$.

2. Main result. We begin with the statement and the proof the following result.

Main theorem. For $0 \le t \le 1$, we have $A_{v}(\alpha, \beta; a, b) \cap S_{v}^{*}(\alpha) \subset A_{v}(\alpha, \beta; (a-1)t+1, bt)$.

¹⁹⁹⁰ Mathematics Subject Classification. Primary 30c45.

^{*)} Department of Mathematics, Gyeongsang National University, Korea.

^{**&#}x27; Department of Mathematics, Kinki University, Japan.