55. Tuboids of Cⁿ with Cone Property and Domains of Holomorphy

By Giuseppe ZAMPIERI

Dipartimento di Matematica, Universita di Padova via Belzoni 7, 35131 Padova, Italy

(Communicated by Shokichi IYANAGA, M. J. A., June 11, 1991)

Abstract: Let X be a C^{∞} -manifold, M a closed submanifold, Ω an open set of M. We introduce in §1 a class of domains U of X called Ω -tuboids. They coincide with the original ones by [2] apart from an additional assumption, of cone type, at $\partial\Omega$. In §2 we take a complex of sheaves \mathcal{F} on X and denote by $\mu_{\mathcal{Q}}(\mathcal{F})$ the microlocalization of \mathcal{F} along Ω . We take a closed convex proper cone λ of T_M^*X and describe the stalk of $R\pi_*R\Gamma_{\lambda}\mu_{\mathcal{Q}}(\mathcal{F})_{T_M^*X}$ by means of cohomology groups of \mathcal{F} over Ω -tuboids U with profile $\gamma = \operatorname{int} \lambda^{oa}$. In §3 we take $X = C^n$, $M = \mathbb{R}^n$, Ω open convex in M and prove that in the class of Ω -tuboids with a prescribed profile there is a fundamental system of domains of holomorphy. By this tool we prove in §4 a decomposition theorem for the microsupport at the boundary SS_{Ω} by Schapira [9] (cf. also [5]).

§1. Let X be a C^{∞} manifold, M a closed submanifold, let $\tau: TX \to X$ (resp $\pi: T^*X \to X$) be the tangent (resp cotangent) bundle to X, and let $\tau: T_M X \to M$ (resp $\pi: T_M^* X \to M$) be the normal (resp conormal) bundle to M in X. We note that we have an embedding $\iota: TM \longrightarrow M \times_x TX$ and a projection $\sigma: M \times_x TX \to T_M X$. For a subset A of X (resp of M) we shall define the strict normal cone of A in X (resp M) by $N^x(A) = TX \setminus C(X \setminus A, A)$ (resp $N^M(A) = TM \setminus C(M \setminus A, A)$) where $C(\cdot, \cdot)$ is the closed cone of TX defined in [6]. If no confusion may arise, we shall omit the superscripts X and M. Let Ω be an open set of M and x_0 a point of $\partial \Omega$. We shall assume (1.1) $N_{x_0}^M(\Omega) \neq \emptyset$.

Let γ be an open convex cone of $\overline{\Omega} \times_{M} T_{M}X$ with $\tau(\gamma) \supset \overline{\Omega}$.

Definition 1.1. A domain $U \subset X$ is said to be an Ω -tuboid with profile γ when

(1.2) $\sigma(M \times_{X} TX \setminus C(X \setminus U, \overline{\Omega})) \supset \gamma.$

One proves that $\theta \in T_{x_0}X \setminus C_{x_0}(X \setminus U, \overline{\Omega})$ iff for a choice of local coordinates there exists a neighborhood V of x_0 and an open cone G containing θ s.t. $((\overline{\Omega} \cap V) + G) \cap V \subset U$. In particular:

 $TX \setminus C(X \setminus U, \overline{\Omega}) = (TX \setminus C(X \setminus U, \overline{\Omega})) + N(\Omega).$

Lemma 1.2. Let (1.2) hold. Then there exists an open convex cone $\beta \subset \overline{\Omega} \times_X TX$:

(1.3) $\beta \subset TX \setminus C(X \setminus U, \overline{\Omega}), \quad \beta = \beta + N(\Omega), \quad \sigma(\beta) \supset \gamma.$ *Proof.* For a choice of coordinates on X we identify (1.4) $M \times_X TX \cong TM \oplus_M T_M X \ni (t, x + \sqrt{-1}y).$