55. Tuboids of C^{n} with Cone Property and Domains of Holomorphy

By Giuseppe Zampieri
Dipartimento di Matematica, Universita di Padova via Belzoni 7, 35131 Padova, Italy

(Communicated by Shokichi Iyanaga, m. J. A., June 11, 1991)

Abstract

Let X be a C^{∞}-manifold, M a closed submanifold, Ω an open set of M. We introduce in $\S 1$ a class of domains U of X called Ω-tuboids. They coincide with the original ones by [2] apart from an additional assumption, of cone type, at $\partial \Omega$. In $\S 2$ we take a complex of sheaves \mathscr{F} on X and denote by $\mu_{\Omega}(\mathscr{F})$ the microlocalization of \mathscr{F} along Ω. We take a closed convex proper cone λ of $T_{M}^{*} X$ and describe the stalk of $R \pi_{*} R \Gamma_{\lambda} \mu_{\rho}(\mathscr{F}) T_{M X}^{*} X$ by means of cohomology groups of \mathscr{F} over Ω-tuboids U with profile $\gamma=\operatorname{int} \lambda^{\circ o a}$. In $\S 3$ we take $X=\boldsymbol{C}^{n}, M=\boldsymbol{R}^{n}, \Omega$ open convex in M and prove that in the class of Ω-tuboids with a prescribed profile there is a fundamental system of domains of holomorphy. By this tool we prove in $\S 4$ a decomposition theorem for the microsupport at the boundary $S S_{\Omega}$ by Schapira [9] (cf. also [5]).

§ 1. Let X be a C^{∞} manifold, M a closed submanifold, let $\tau: T X \rightarrow X$ (resp $\pi: T^{*} X \rightarrow X$) be the tangent (resp cotangent) bundle to X, and let $\tau: T_{M} X \rightarrow M$ (resp $\left.\pi: T_{M}^{*} X \rightarrow M\right)$ be the normal (resp conormal) bundle to M in X. We note that we have an embedding $c: T M \subset M \times{ }_{X} T X$ and a projection $\sigma: M \times{ }_{X} T X \rightarrow T_{M} X$. For a subset A of X (resp of M) we shall define the strict normal cone of A in $X($ resp $M)$ by $N^{x}(A)=T X \backslash C(X \backslash A, A)$ (resp $N^{M}(A)=T M \backslash C(M \backslash A, A)$) where $C(\cdot, \cdot)$ is the closed cone of $T X$ defined in [6]. If no confusion may arise, we shall omit the superscripts X and M. Let Ω be an open set of M and x_{0} a point of $\partial \Omega$. We shall assume (1.1) $\quad N_{x_{0}}^{M}(\Omega) \neq \emptyset$.

Let γ be an open convex cone of $\bar{\Omega} \times{ }_{M} T_{M} X$ with $\tau(\gamma) \supset \bar{\Omega}$.
Definition 1.1. A domain $U \subset X$ is said to be an Ω-tuboid with profile γ when

$$
\begin{equation*}
\sigma\left(M \times{ }_{X} T X \backslash C(X \backslash U, \bar{\Omega})\right) \supset \gamma . \tag{1.2}
\end{equation*}
$$

One proves that $\theta \in T_{x_{0}} X \backslash C_{x_{0}}(X \backslash U, \bar{\Omega})$ iff for a choice of local coordinates there exists a neighborhood V of x_{0} and an open cone G containing θ s.t. $((\bar{\Omega} \cap V)+G) \cap V \subset U$. In particular :

$$
T X \backslash C(X \backslash U, \bar{\Omega})=(T X \backslash C(X \backslash U, \bar{\Omega}))+N(\Omega)
$$

Lemma 1.2. Let (1.2) hold. Then there exists an open convex cone $\beta \subset \bar{\Omega} \times{ }_{X} T X:$

$$
\begin{equation*}
\beta \subset T X \backslash C(X \backslash U, \bar{\Omega}), \quad \beta=\beta+N(\Omega), \quad \sigma(\beta) \supset \gamma . \tag{1.3}
\end{equation*}
$$

Proof. For a choice of coordinates on X we identify

$$
\begin{equation*}
M \times_{X} T X \cong T M \oplus_{M} T_{M} X \ni(t, x+\sqrt{-1} y) \tag{1.4}
\end{equation*}
$$

