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Abstract: Let X be a C-manifold, M a closed submanifold, 9 an open
set of M. We introduce in 1 a class of domains U of X called fJ-tuboids.
They coincide with the original ones by [2] apart from an additional as-
sumption, of cone type, at a/2. In 2 we take a complex of sheaves on
X and denote by/a() the microlocalization of along f2. We take a closed
convex proper cone 2 of T*X and describe the stalk of Rr.RF/(ZZ)r*r by
means of cohomology groups of over 9-tuboids U with profile ’=int.
In 3 we take X=Cn, M=R, [2 open convex in M and prove that in the
class of 2-tuboids with a prescribed profile there is a fundamental system
of domains of holomorphy. By this tool we prove in 4 a decomposition
theorem for the microsupport at the boundary SSa by Schapira [9] (cf. also
[5]).

1. Let X be a C manifold, M a closed submanifold, let r" TX-->X
(resp z" T*X--+X) be the tangent (resp cotangent) bundle to X, and let
r" TX--->M (resp z" T*zX-->M)be the normal (resp conormal) bundle to M
in X. We note that we have an embedding ’ TM >MxTX and a
projection a" M x TX--TX. For a subset A of X (resp of M) we shall
define the strict normal cone of A in X (resp M) by NX(A)= TX\C(X\A, A)
(resp N(A)=TM\C(M\A,A)) where C(., .) is the closed cone of TX de-
fined in [6]. If no confusion may arise, we shall omit the superscripts X
and M. Let 2 be an open set of M and x0 a pint of . We shall assume
(1.1) No(g) 4= O.
Let r be an open convex cone of TX with r(r)/2.

Definition 1.1o A domain UcX is said to be an 9-tuboid with profile
r when
(1.2) a(M xTX\C(X\ U,

One proves that 0 e ToX\Co(X\ U, ) iff for a choice of local coordi-
nates there exists a neighborhood V of x0 and an open cone G containing
s.t. ((9 f V)+ G) f Vc U. In particular"

TX\C(X\ U, [2)=(TX\C(X\ U, 9)) +N(/2).
Lemma 1.2. Let (1.2) hold. Then there exists an open convex cone

TX"
(1.3) cTX\C(X\ U,

Proof. For a choi.ce of coordinates on X we identify
(1.4) M x TX-- TM TX (, +/- 1 y).


