53. On Solutions of the Poincaré Equation

By Katsunori Iwasaki
Department of Mathematics, Faculty of Science, University of Tokyo
(Communicated by Shokichi Iyanaga, m. J. A., June 11, 1991)

1. Introduction and result. Consider a map $F: C^{2} \rightarrow C^{2}$ defined by (1)

$$
F:{ }^{t}(x, y) \longmapsto{ }^{t}(y, a x+p(y)),
$$

where a is a nonzero constant and $p(y)$ is a polynomial of degree $d \geq 2$. The map F is called a twisted elementary map (Kimura [2]). We denote by F^{k} the k-times iteration of F. Assume that $z_{0}=^{t}\left(x_{0}, y_{0}\right) \in C^{2}$ is a periodic point of F of period k, i.e. a fixed point of F^{k}. Let J be the Jacobian matrix of F^{k} at z_{0}. Let ρ be an eigenvalue of $J, v={ }^{t}\left(v_{1}, v_{2}\right) \in \boldsymbol{C}^{2}$ an eigenvector of J corresponding to the eigenvalue ρ. The eigenvalue ρ is said to be unstable (resp. stable) if $|\rho|>1$ (resp. if $|\rho|<1$).

Definition (Kimura [2]). Suppose that ρ is unstable (resp. stable). A holomorphic map $E: C \rightarrow C^{2}$ is called an unstable (resp. a stable) curve through z_{0} if the following two conditions hold:

$$
\begin{align*}
\Xi(\rho t) & =F^{k}(\Xi(t)) & & \text { for } t \in C \tag{2}\\
\Xi(t) & =z_{0}+v t+O\left(t^{2}\right) & & \text { as } t \longrightarrow 0 . \tag{3}
\end{align*}
$$

If none of $\rho^{n}(n=2,3,4, \cdots)$ is an eigenvalue of J, it is known that there exists an unstable (a stable) curve through z_{0} ([2]). The functional equation (2) is called the Poincaré equation, since Poincaré [3] was the first to consider this type of functional equation (cf. Dixon-Esterle [1]). In this paper we shall establish the following :

Main theorem. Each component of the (un) stable curve $E(t)$ is an entire function of order τ and of finite type, where τ is given by

$$
\tau=\frac{\log d}{\left.|\log | \rho\right|^{1 / k} \mid}
$$

Remark. In a special case $k=1$, the result is already shown in [2]. As we shall see below, however, we require much subtler estimates than those in [2] to establish the theorem for $k>1$.
2. Notation. Throughout this paper we employ the following notation.
(a) Let $\boldsymbol{E}_{m}=^{t}\left(\xi_{m}, \eta_{m}\right): C \rightarrow \boldsymbol{C}^{2}$ be holomorphic maps defined recursively by $\Xi_{0}(t)=\boldsymbol{E}(t)$ and

$$
\begin{equation*}
\Xi_{m}(t)=F\left(\Xi_{m-1}\left(\lambda^{-1} t\right)\right) \quad \text { for } m \in \boldsymbol{Z}, \tag{4}
\end{equation*}
$$

where $\lambda=\rho^{1 / k}$. We put $\xi={ }^{t}\left(\xi_{0}, \cdots, \xi_{k-1}\right)$ and $\eta={ }^{t}\left(\eta_{0}, \cdots, \eta_{k-1}\right)$.
(b) For a k-vector $u={ }^{t}\left(u_{0}, \cdots, u_{k-1}\right) \in \boldsymbol{C}^{k}$, we put $\|u\|=\left|u_{0}\right|+\cdots+\left|u_{k-1}\right|$ and $p(u)={ }^{t}\left(p\left(u_{0}\right), \cdots, p\left(u_{k-1}\right)\right)$.
(c) We put for $r>0$,

