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1. Introduction and result. Consider a map F: C2--.C defined by

( 1 ) F (x, y) >t(y, ax+p(y)),
where a is a nonzero constant and p(y) is a polynomial of degree d_2.
The map F is called a twisted elementary map (Kimura [2]). We denote
by F the k-times iteration of F. Assume that z0=t(x0, Y0) e C is a periodic
point of F of period k, i.e. a fixed point of F. Let J be the Jacobian
matrix of F at z0. Let p be an eigenvalue of J, V"-’t(Vl, V2) e C an eigen-
vector of J corresponding to the eigenvalue p. The eigenvalue p is said to
be unstable (resp. stable) if [pl>l (resp. if Ipl<l).

Definition (Kimura [2]). Suppose that p is unstable (resp. stable). A
holomorphic map :C--C is called an unstable (resp. a stable) curve
through z0 if the following two conditions hold"

( 2 ) (pt)=F((t)) for t C
( 3 ) (t) Zo+ vt + O(t) as t ;0.

If none of pn (n=2, 3, 4,...) is an eigenvalue of J, it is known that
there exists an unstable (a stable) curve through z0 ([2]). The functional
equation (2) is called the Poincarg equation, since Poincar6 [3] was the first
to consider this type of functional equation (cf. Dixon-Esterle [1]). In this
paper we shall establish the following:

Main theorem. Each component of the (un) stable curve E(t) is an
entire function of order and of finite type, where r is given by

log d
Ilog[l’l

Remark. In a special ease k=l, the result is already shown in [2].
As we shall see below, however, we require much subtler estima.tes than
those in [2] to establish the theorem for k>l.

2. Notation. Throughout this paper we employ the ollowing nota-
tion.

(a) Let --(, ]): C-C be holomorphie maps defined reeursively
by 0(t)=(t) and
( 4 ) (t) F(_(-t)) for m e Z,
where 2=p/. We put =t(0,..., _,) and =’(]0,’’ ", ]-).

(b) For a k-vector u=(u0, ...,u_) e C, we put Ilull=lu01+." +lu-l
and p(u)=(p(Uo), ..., p(u_)).

(c) We put for r0,


