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1. Introduction. In ring theory, it is well known that each one of
the intersection and the product of a minimal right ideal and a minimal left
ideal of a ring is either {0} or a minimal quasi-ideal of the ring (see [2]). In
[5], this result has been generalized for zero-symmetric near-rings.

The purpose of this note is to extend the above result to a class of ab-
stract affine near-rings. For the basic terminology and notation we refer
to [1].

2. Preliminaries. Let N be a near-ring, which always means right
one throughout this note.

If A and B are two non-empty subsets of N, then AB denotes the set
of all finite sums of the form a.b, with a e A, b e B, and A. B denotes
the set of all finite sums of the form (a(a’+b)--a.a’) with a, a e A,
beB.

A right ideal of N is a normal subgroup R of (N, +) such that RN_R,
and a left ideal of N is a normal subgroup L of (N, +) such that N. L_L.
A quasi-ideal of N is a subgroup Q of (N, +) such that N Q NQ QN

_
Q.

Right ideals and left ideals are quasi-ideals. The intersection of a family
of quasi-ideals is again a quasi-ideal.

A non-zero quasi-ideal Q of N is minimal if the only quasi-ideal of N
contained in Q are {0} and Q. Similarly, one defines minimal right ideals
and minimal left ideals.

A near-ring N is called an abstract affine near-ring if N is abelian and
N0--N, where No andN are the zero-symmetric part and the set of all dis-
tributive elements of N, respectively.

Let N be an abstract affine near-ring. Then the following hold (see [3]
and [4])"

(a) A subgroup L of (N, +) is a left ideal of N if and only if NoL_L.
(b) If S is a subgroup of (N, +), then NoS is a left ideal of N and SN

is a right ideal of N.
(c) A subgroup Q of (N, +) is a quasi-ideal of N if and only if NoQ

QN_Q.
3. Main results. We start with
Lemma 1. Let N be an abstract affine near-ring. Then a minimal

right (left) ideal of N contained in No is a minimal right (left) ideal of No.
Proof. Let R be a minimal right ideal of N contained in No. By [1,

Proposition 9.73] we have R=Ro+Rc, where Ro=RNo is a right ideal of


