27. On the Gaps between the Consecutive Zeros of the Riemann Zeta Function

By Akio FuJiI
Department of Mathematics, Rikkyo University
(Communicated by Shokichi IyANAgA, M. J. A., April 12, 1990)

§ 1. Introduction. Let γ_{n} be the n-th positive imaginary part of the zeros of the Riemann zeta function $\zeta(s)$. We have shown in [1] and [2] that for each integer $k \geq 1$ and for $T>T_{0}$,

$$
C_{1} \frac{T \log T}{\log ^{k} T} \leq \sum_{T \leq r_{n} \leq 2 T}\left(\gamma_{n+1}-\gamma_{n}\right)^{k} \leq C_{2} \frac{T \log T}{\log ^{k} T}
$$

where C_{1} and C_{2} are some positive constants. The implicit constant C_{2} might be large. The purpose of the present article is to get an explicit C_{2} (for the case $k=2$) under the assumption of the Riemann Hypothesis. We shall prove the following theorem.

Theorem 1. For $T>T_{0}$, we have

$$
\sum_{r_{n} \leq T}\left(\gamma_{n+1}-\gamma_{n}\right)^{2} \leq 9 \cdot \frac{2 \pi T}{\log \frac{T}{2 \pi}}
$$

We shall prove this theorem as an application of the following mean value theorem which has been proved in [5]. We put

$$
S(t)=\frac{1}{\pi} \arg \zeta\left(\frac{1}{2}+i t\right)
$$

and

$$
F(a)=F(a, T)=\left(\frac{T}{2 \pi} \log \frac{T}{2 \pi}\right)^{-1} \sum_{0<r, r^{\prime} \leq T}\left(\frac{T}{2 \pi}\right)^{i a\left(\gamma-r^{\prime}\right)} \frac{4}{4+\left(\gamma-\gamma^{\prime}\right)^{2}},
$$

where γ and γ^{\prime} run over the imaginary parts $(\neq 0)$ of the zeros of $\zeta(s)$.
Theorem 2. Suppose that $0<\Delta=o(1)$. Then we have for $T>T_{0}$,

$$
\begin{aligned}
& \int_{0}^{T}(S(t+\Delta)-S(t))^{2} d t \\
& \quad=\frac{T}{\pi^{2}}\left\{\int_{0}^{\Delta \log (T / 2 \pi)} \frac{1-\cos (a)}{a} d a+\int_{1}^{\infty} \frac{F(a)}{a^{2}}\left(1-\cos \left(a \Delta \log \frac{T}{2 \pi}\right)\right) d a\right\}+o(T)
\end{aligned}
$$

In fact, we shall use it in the following form.
Corollary. Suppose that $T>T_{0}$ and $1 / \log (T / 2 \pi) \leq \Delta=o(1)$. Then we have with $|\theta| \leq 1$ and the Euler constant C_{0},

$$
\begin{aligned}
& \int_{0}^{T}(S(t+\Delta)-S(t))^{2} d t=\frac{T}{\pi^{2}} \log \left(\Delta \log \frac{T}{2 \pi}\right) \\
& \quad+\frac{T}{\pi^{2}}\left(C_{0}-\frac{\sin (\Delta \log (T / 2 \pi))}{\Delta \log \frac{T}{2 \pi}}+2 \theta\left(\frac{1}{\left(\Delta \log \frac{T}{2 \pi}\right)^{2}}+2\right)+o(1)\right)
\end{aligned}
$$

