26. The Modulo 2 Homology Group of the Space of Rational Functions

By Yasuhiko Kamiyama
Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Kunihiko Kodaira, m. J. a., March 12, 1990)
§ 1. Introduction. Let \hat{M}_{k} be the moduli space of $S U(2)$ monopoles associated with Yang-Mills-Higgs and Bogomol'nyi equations. It is shown [1] that \hat{M}_{k} is homeomorphic to the space of based holomorphic maps of degree k from S^{2} to S^{2}.

More generally we define $F_{k}^{*}\left(S^{2}, C P^{m}\right)$ to be the space of based holomorphic maps of degree k from S^{2} to $\boldsymbol{C} \boldsymbol{P}^{m}$.

Segal [3] studied the connection between $F_{k}^{*}\left(S^{2}, C P^{m}\right)$ and $\Omega_{k}^{2} C P^{m}$. The result is as follows

Theorem 1 [3]. The inclusion

$$
i: \boldsymbol{F}_{k}^{*}\left(\boldsymbol{S}^{2}, \boldsymbol{C} \boldsymbol{P}^{m}\right) \longrightarrow \Omega_{k}^{2} \boldsymbol{C} \boldsymbol{P}^{m}
$$

is a homotopy equivalence up to dimension $k(2 m-1)$, the induced homomorphism $i_{*}: \pi_{q}\left(F_{k}^{*}\left(S^{2}, \boldsymbol{C P} \boldsymbol{P}^{m}\right)\right) \rightarrow \pi_{q}\left(\Omega_{k}^{2} \boldsymbol{C} \boldsymbol{P}^{m}\right)$ is bijective for $q<k(2 m-1)$ and surjective for $q=k(2 m-1)$.

It is well know [2] that $\bigcup_{k} \Omega_{k}^{2} \boldsymbol{C} P^{m}$ has natural loop sum and C_{2} structure.
Recently Boyer and Mann [1] introduced loop sum and C_{2} structure in $\coprod_{k} \boldsymbol{F}_{k}^{*}\left(\boldsymbol{S}^{2}, \boldsymbol{C} \boldsymbol{P}^{m}\right)$ which are compatible with the inclusion i. Hence we can naturally define the loop sum and the Dyer-Lashof operation Q_{1} in $\oplus_{k} H_{*}$ ($F_{k}^{*}\left(S^{2}, C P^{m}\right) ; Z_{2}$).

By using these methods, Boyer and Mann produced certain elements in $H_{*}\left(\boldsymbol{F}_{k}^{*}\left(S^{2}, \boldsymbol{C P} \boldsymbol{P}^{m}\right) ; \boldsymbol{Z}_{2}\right)$ some of which have degree greater than $k(2 m-1)$. (cf. Theorem 1.)

Then the following question arises naturally.
Question. Are the elements produced by the loop sum and the DyerLashof operation from $\iota_{2 m-1}\left(\iota_{2 m-1}\right.$ will be defined later) the basis of $H_{*}\left(F_{k}^{*}\left(S^{2}, C P^{m}\right) ; Z_{2}\right)$?

We shall study this question. The results are as follows. We write F_{k}^{*} for $F_{k}^{*}\left(S^{2}, C P^{1}\right)$.

Theorem A. The elements produced by the loop sum and the DyerLashof operation from ι_{1} are the basis of $H_{*}\left(F_{2}^{*} ; Z_{2}\right)$.

Theorem B. For $m \geqq 2$, the elements produced by the loop sum and the Dyer-Lashof operation from $\iota_{2 m-1}$ are the basis of $H_{*}\left(F_{2}^{*}\left(S^{2}, C P^{m}\right) ; \boldsymbol{Z}_{2}\right)$.

Theorem C. For $m \geqq 2$, the elements produced by the loop sum and the Dyer-Lashof operation from $\iota_{2 m-1}$ are the basis of $H_{*}\left(F_{3}^{*}\left(S^{2}, C P^{m}\right) ; Z_{2}\right)$.

Theorem D. For $m \geqq k+1$, the elements produced by the loop sum

