26. The Modulo 2 Homology Group of the Space of Rational Functions

By Yasuhiko Kamiyama

Department of Mathematics, Faculty of Science, University of Tokyo (Communicated by Kunihiko Kodaira, M. J. A., March 12, 1990)

§ 1. Introduction. Let \hat{M}_k be the moduli space of SU(2) monopoles associated with Yang-Mills-Higgs and Bogomol'nyi equations. It is shown [1] that \hat{M}_k is homeomorphic to the space of based holomorphic maps of degree k from S^2 to S^2 .

More generally we define $F_k^*(S^2, \mathbb{C}P^m)$ to be the space of based holomorphic maps of degree k from S^2 to $\mathbb{C}P^m$.

Segal [3] studied the connection between $F_k^*(S^2, \mathbb{C}P^m)$ and $\Omega_k^2\mathbb{C}P^m$. The result is as follows

Theorem 1 [3]. The inclusion

$$i: F_k^*(S^2, \mathbb{C}P^m) \longrightarrow \Omega_k^2 \mathbb{C}P^m$$

is a homotopy equivalence up to dimension k(2m-1), the induced homomorphism i_* : $\pi_q(F_k^*(S^2, \mathbb{C}P^m)) \to \pi_q(\Omega_k^2 \mathbb{C}P^m)$ is bijective for q < k(2m-1) and surjective for q = k(2m-1).

It is well know [2] that $\coprod_k \Omega_k^2 CP^m$ has natural loop sum and C_2 structure. Recently Boyer and Mann [1] introduced loop sum and C_2 structure in $\coprod_k F_k^*(S^2, CP^m)$ which are compatible with the inclusion i. Hence we can naturally define the loop sum and the Dyer-Lashof operation Q_1 in $\bigoplus_k H_* (F_k^*(S^2, CP^m); Z_2)$.

By using these methods, Boyer and Mann produced certain elements in $H_*(F_k^*(S^2, \mathbb{C}P^m); \mathbb{Z}_2)$ some of which have degree greater than k(2m-1). (cf. Theorem 1.)

Then the following question arises naturally.

Question. Are the elements produced by the loop sum and the Dyer-Lashof operation from ι_{2m-1} (ι_{2m-1} will be defined later) the basis of $H_*(F_k^*(S^2, \mathbb{C}P^m); \mathbb{Z}_2)$?

We shall study this question. The results are as follows. We write F_k^* for $F_k^*(S^2, \mathbb{C}P^1)$.

Theorem A. The elements produced by the loop sum and the Dyer-Lashof operation from ι_1 are the basis of $H_*(F_2^*; \mathbb{Z}_2)$.

Theorem B. For $m \ge 2$, the elements produced by the loop sum and the Dyer-Lashof operation from ι_{2m-1} are the basis of $H_*(F_2^*(S^2, \mathbb{C}P^m); \mathbb{Z}_2)$.

Theorem C. For $m \ge 2$, the elements produced by the loop sum and the Dyer-Lashof operation from ι_{2m-1} are the basis of $H_*(F_3^*(S^2, \mathbb{C}P^m); \mathbb{Z}_2)$.

Theorem D. For $m \ge k+1$, the elements produced by the loop sum