22. On the Distribution of the Zeros of the Riemann Zeta Function in Short Intervals

By Akio FUJII

Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., March 12, 1990)

§ 1. Introduction. Let $\zeta(s)$ be the Riemann zeta function. In [2] and [5], the author has shown that for $T > T_0$, $0 < \Delta \ll 1$ and for each integer $k \geq 1$,

$$\int_{0}^{T} (S(t+\Delta) - S(t))^{2k} dt$$

$$= \frac{(2k)!}{(2\pi)^{2k}k!} T(2\log(2+\Delta\log T))^{k} + O(T(\log(2+\Delta\log T))^{k-(1/2)}),$$

where we put $S(t) = (1/\pi) \arg \zeta(1/2 + it)$ as usual. This formula has been proved to be powerful in the theory of the Riemann zeta function (cf. [7], [9] and [10], for example). Recently, some attentions have been paid to it from the view point of the comparison with the distribution of the eigenvalues of the Gaussian Unitary Ensembles (cf. [1], [3], [7] and [12]).

In the present article, we shall assume the Riemann Hypothesis and refine the above result for k=1 as follows. To state our result we put

$$F(a) \equiv F(a, T) \equiv \left(\frac{T}{2\pi} \log \frac{T}{2\pi}\right)^{-1} \sum_{0 < r, r' \leq T} \left(\frac{T}{2\pi}\right)^{ia(r-r')} \frac{4}{4 + (r - r')^2},$$

where $a \ge 0$, γ and γ' run over the imaginary parts ($\neq 0$) of the zeros of $\zeta(s)$.

Theorem. Suppose that $0 \le \Delta = o(1)$. Then we have for $T > T_0$,

$$\int_{0}^{T} (S(t+\Delta) - S(t))^{2} dt$$

= $\frac{T}{\pi^{2}} \left\{ \int_{0}^{d \log (T/2\pi)} \frac{1 - \cos (a)}{a} da + \int_{1}^{\infty} \frac{F(a)}{a^{2}} \left(1 - \cos \left(a\Delta \log \frac{T}{2\pi} \right) \right) da \right\} + o(T).$

We shall prove this by applying Goldston [8] while we have applied Selberg [13] to prove our previous mean value theorem described above.

Some applications of this theorem will be discussed in the forthcoming paper [6].

§2. Proof of Theorem. We shall use first the following Goldston's explicit formula for S(t) (cf. p. 157 of [8]). For $t > 1, t \neq i$, $x = (T/2\pi)^{\beta}$ and $0 \leq \beta \leq 1$,

$$S(t) = -\frac{1}{\pi} \sum_{n \le x} \frac{A(n) \sin(t \log n)}{\sqrt{n} \log n} f\left(\frac{\log n}{\log x}\right)$$
$$+ \frac{1}{\pi} \sum_{r} h((t-r) \log x) + O\left(\frac{1}{t \log^2 x}\right) + O\left(\frac{\sqrt{x}}{t^2 \log^2 x}\right)$$
$$= -A(t) + B(t) + O\left(\frac{1}{t \log^2 x}\right) + O\left(\frac{\sqrt{x}}{t^2 \log^2 x}\right), \text{ say,}$$