Nonlinear Singular First Order Partial Differential Equations of Briot-Bouquet Type

By Raymond GÉRARD*) and Hidetoshi TAHARA**)
(Communicated by Kôsaku Yosida, M. J. A., March 12, 1990)

In this paper we will present a generalization of the Briot-Bouquet ordinary differential equation to partial differential equations.

§ 1. Briot-Bouquet equation. First let us recall the theory of non-linear ordinary differential equations of the form

(1.1)
$$t\frac{du}{dt} = f(t, u), \quad f(0, 0) = 0$$

which was first studied by Briot-Bouquet [1]. Nowadays it is called the Briot-Bouquet equation and the structure of solutions of (1.1) near the origin of C_t is well-known (see Hille [3], Hukuhara-Kimura-Matuda [4], Kimura [5], Gérard [2] etc.). In particular, when

$$\rho = \frac{\partial f}{\partial u}(0,0)$$

is in a generic position, we know the following:

Theorem 1. Assume that f(t, u) is a holomorphic function defined near the origin of $C_t \times C_u$. Then we have:

- (1) (Holomorphic solutions). If $\rho \in N^*(=\{1,2,3,\cdots\})$, the equation (1.1) has a unique solution $u_0(t)$ holomorphic near the origin of C_t satisfying $u_0(0)=0$.
- (2) (Singular solutions). If $\rho \in N^* \cup \{a \in R; a \leq 0\}$, the general solution u(t) of (1.1) near the origin of C_t is given by

(1.2)
$$u(t) = ct^{\rho} + a_{1,0}t + \sum_{i+j\geq 2} a_{i,j}t^{i}(ct^{\rho})^{j},$$

where $c \in C$ is arbitrary, the coefficients $a_{i,j} \in C$ are uniquely determined by the equation (1, 1), and the series

$$w + a_{1,0}t + \sum_{i+j \ge 2} a_{i,j}t^i w^j$$

is a convergent power series in $\{t, w\}$. The holomorphic solution $u_0(t)$ in (1) is given by the case c=0.

§ 2. Generalization of (1.1) to partial differential equations. Let us consider

(2. 1)
$$t \frac{\partial u}{\partial t} = F\left(t, x, u, \frac{\partial u}{\partial x}\right),$$

where
$$(t, x) \in C_t \times C_x^n$$
, $x = (x_1, \dots, x_n)$, $\frac{\partial u}{\partial x} = \left(\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}\right)$ and $F(t, x, u, v)$

with $v=(v_1,\dots,v_n)$ is a function defined in a polydisk Δ centered at the

^{*)} Institut de Recherche Mathématique Alsacien, Université Louis Pasteur.

^{**} Department of Mathematics, Sophia University.