19. Certain Quadratic First Integral and Elliptic Orbits of Linear Hamiltonian System

By Shigeru Maeda
Department of Information Science and Intelligent Systems, Faculty of Engineering, Tokushima University
(Communicated by Kôsaku Yosida, M. J. A., March 12, 1990)

1. Introduction. This paper deals with a close relation between a hyperplane filled with elliptic orbits of a linear Hamiltonian system and a certain quadratic first integral. To be more precise, it is proved that when a linear Hamiltonian system admits an invariant hyperplane filled with closed orbits, it leaves a quadratic form invariant, and conversely, when a certain quadratic first integral is admitted, there exists such an invariant hyperplane.

By the way, the phase portrait drawn by a discrete-time system which approximates a continuous Hamiltonian system is often different from that of the original system. For example, a closed orbit of the original system is usually destroyed by a discrete system, even when the original one is linear. It seems that the result of this paper is of use for the purpose of reproducing the original elliptic orbit by a discrete system when a certain kind of first integrals is inherited.
2. Elliptic orbit of linear system. Let us think of a linear Hamiltonian system with N degrees of freedom given by

$$
\begin{equation*}
\frac{d x}{d t}=H x, \quad H \in \operatorname{sp}(N, R), \quad x \in R^{2 N} . \tag{1}
\end{equation*}
$$

We introduce into the phase space $R^{2 N}$ both a Euclidean inner product (x, y) $=^{t} x y$ and a symplectic inner product $\langle x, y\rangle={ }^{t} x J y$, where $J=\left[\begin{array}{cc}0 & I \\ -I & 0\end{array}\right]$ and the superfix t denotes matrix transpose. An orbit of (1) which starts from x_{0} is closed, it and only if $e^{\varepsilon H} x_{0}=x_{0}$ holds for a positive constant ε. This condition is equivalent to that H has pure imaginary eigenvalues, in other words, H^{2} has a negative eigenvalue. Then, we define a linear subspace by

$$
\begin{equation*}
\Gamma_{\beta}=\left\{x \in R^{2 N} \mid H^{2} x=-\beta^{2} x\right\} \quad(\beta>0), \tag{2}
\end{equation*}
$$

and assume that $\Gamma_{\beta} \neq\{0\}$ from now on. Let us pay attention to the solution curves of (1) which are contained in Γ_{β}. Choose an arbitrary $q \in H_{\beta}, q \neq 0$, and put

$$
\begin{equation*}
p=-\frac{1}{\beta} H q \tag{3}
\end{equation*}
$$

Then, q and p are linearly independent and spans a two-dimensional hyperplane Γ included by Γ_{β}.

Proposition 1. The orbit of (1) starting from $q \in \Gamma$ is an ellipse with the period $2 \pi / \beta$, and lies in Γ. Furthermore, all elliptic orbits in Γ are

