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1. Introduction and the table. For a square-free positive number
D, let /c be a real quadratic number field Q(D ). Let o, U and U+ be the
ring of integers in /c, the group of units in o and the group of all totally
positive units. The extended Hilbert modular group is defined as follows
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Hausmann investigated the fixed points of in [1]. When k has a unit o
negative norm, coincides with the ordinary Hilbert modular group F.
We consider the space (D) of the cusp forms of weight two with respect to
P in H (H being a complex upper half plane).

For the ordinary Hilbert modular group, we have already given
dimension table in [5] of which this note is a continuation. We tabulate
the dimension of S(D) for a square-free D and ID1000. In the follow-
ing table, the number D is given by

( 2 ) D=i+] (/=row number, ]=column number).

When the mark ’-’ appears ater a figure, Q(J D ) has a unit of negative
norm. The mark ’**’ means that D is not square-free. To calculate this
tble, we used ACOS-6 computer system in Okayama Un’iversity Computer
center.

2. The method of the computation. From now on, we will only
treat with the case of F. For a square-free divisor w of the discrimi-
nant d of k, let F, be the subgroup of PLy(k) generated by F and the set

elements(: )(modkx) such that a, b, c, de(w)/, ad-bc=w, where

(w)n is an ideal whose square equals (w). When is a square-free part of
d/w, F,=F. There exists some w such that

By virtue of [1], [3], we get

Theorem. Let w be a divisor of d stisfying F, . The dimension

of (D) is given by
3 ) dim (D) to+ t, + t-- 1

Each term can be written as follows.
( 4 ) *o (1 4)(- 1)

( 5 t,=a(D, w)h(--D)+b(D, w)h(--3D)+c(D, w)h(--w)h(-)


