83. The Set of Primes Bounded by the Minkowski Constant of a Number Field

By Makoto Ishibashi*)
(Communicated by Shokichi Iyanaga, m. J. A., Dec. 12, 1990)

Let k be an algebraic number field with degree $m=r_{1}+2 r_{2} \geqq 2$ and discriminant d_{k}, where (r_{1}, r_{2}) denotes the signature of k. Write $M_{k}=$ $(4 / \pi)^{r_{2}}\left(m!/ m^{m}\right) \sqrt{\left|d_{k}\right|}$ (the Minkowski constant of k) and $M(k)=\{p$; rational prime and $\left.p \leqq M_{k}\right\}$. For every prime number p, let $p O_{k}=P_{1}^{e_{1}} \ldots P_{g}^{e_{g}}$ be the decomposition into prime ideals of O_{k} (where O_{k} denotes the ring of integers in $k, P_{i} \neq P_{j}(i \neq j)$ are distinct prime ideals of $\left.O_{k}\right)$. In general, the prime number p is not necessarily irreducible element in O_{k}. Let $\operatorname{Irr}\left(O_{k}\right)$ be the set of all irreducible elements in O_{k}. Now we define nine subsets $A_{0}(k), A_{1}(k), \cdots, A_{8}(k)$ of $M(k)$ as follows.

$$
\begin{aligned}
& A_{0}(k)=\left\{p \in M(k) ; g=e_{1}=1 \text { (i.e. } p \text { remains prime in } O_{k} \text {, so) } p \in \operatorname{Irr}\left(O_{k}\right)\right\} \\
& A_{1}(k)=\left\{p \in M(k) ; g=1, e_{1}=m \text { (i.e. } p \text { is fully ramified), } p \in \operatorname{Irr}\left(O_{k}\right)\right\} \\
& A_{2}(k)=\left\{p \in M(k) ; e_{1}+\cdots+e_{g} \nsupseteq m, 1 \nsupseteq e_{j} \text { for some } j, p \in \operatorname{Irr}\left(O_{k}\right)\right\} \\
& A_{3}(k)=\left\{p \in M(k) ; g=m, e_{1}=\cdots=e_{g}=1 \text { (i.e. } p\right. \text { splits completely), } \\
& \left.p \in \operatorname{Irr}\left(O_{k}\right)\right\} \\
& A_{4}(k)=\left\{p \in M(k) ; g \nsupseteq m, e_{1}=\cdots=e_{g}=1 \text { (i.e. } p \text { is unramified), } p \in \operatorname{Irr}\left(O_{k}\right)\right\} \\
& A_{5}(k)=\left\{p \in M(k) ; g=1, e_{1}=m \text { (i.e. } p \text { is fully ramified), } p \notin \operatorname{Irr}\left(O_{k}\right)\right\} \\
& A_{8}(k)=\left\{p \in M(k) ; e_{1}+\cdots+e_{g} \nsupseteq m, 1 \nsupseteq e_{j} \text { for some } j, p \notin \operatorname{Irr}\left(O_{k}\right)\right\} \\
& A_{7}(k)=\left\{p \in M(k) ; g=m, e_{1}=\cdots=e_{g}=1 \text { (i.e. } p\right. \text { splits completely), } \\
& \left.p \notin \operatorname{Irr}\left(O_{k}\right)\right\}
\end{aligned}
$$

$A_{8}(k)=\left\{p \in M(k) ; g \nsupseteq m, e_{1}=\cdots=g_{g}=1\right.$ (i.e. p is unramified), $\left.p \notin \operatorname{Irr}\left(O_{k}\right)\right\}$. Then we have $M(k)=A_{0}(k) \cup A_{1}(k) \cup \cdots \cup A_{8}(k)$ (disjoint union). In case $m=2$, the subsets $A_{2}(k), A_{4}(k), A_{6}(k), A_{8}(k)$ are of course empty.

The following three theorems are variations on the theme of T. Ono [2].
Theorem 1. If $M(k)=A_{0}(k)$, then the class number h_{k} of k is one.
Proof. By the Minkowski lemma, the ideal class group H_{k} of k is generated by the classes of prime ideals over $p \in M(k)$. Hence we have $h_{k}=1$.
Q.E.D.

Lemma 1. Let $a O_{k}=Q_{1} \cdots Q_{n}$ be the decomposition into prime ideals $\left(Q_{1}, \cdots, Q_{n}\right.$ are not necessarily distinct, $\left.a \in O_{k}\right)$. Suppose that Q_{i} belongs to an ideal class $x_{i} \in H_{k}(1 \leqq i \leqq n)$ and x_{0} denotes the principal class of H_{k}. Then a is an irreducible element in O_{k} if and only if $x_{i_{1}} \cdots x_{i_{m}} \neq x_{0}$ for every proper subset $\left\{i_{1}, \cdots, i_{m}\right\}$ of $\{1, \cdots, n\}$.

Proof. See Lemma 1.2 in Czogala [1].
Q.E.D.

Theorem 2. If $\#\left(A_{1}(k) \cup A_{3}(k)\right) \geqq 1$, then $h_{k} \geqq m=(k: Q)$.

[^0]
[^0]: *) 1-27-10 Kitahara-cho, Tanashi-shi, Tokyo 188.

