83. The Set of Primes Bounded by the Minkowski Constant of a Number Field

By Makoto Ishibashi*)

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1990)

Let k be an algebraic number field with degree $m=r_1+2r_2\geq 2$ and discriminant d_k , where (r_1,r_2) denotes the signature of k. Write $M_k=(4/\pi)^{r_2}(m!/m^m)\sqrt{|d_k|}$ (the Minkowski constant of k) and $M(k)=\{p\}$ rational prime and $p\leq M_k\}$. For every prime number p, let $p\ O_k=P_1^{e_1}\cdots P_g^{e_g}$ be the decomposition into prime ideals of O_k (where O_k denotes the ring of integers in k, $P_i\neq P_j$ $(i\neq j)$ are distinct prime ideals of O_k). In general, the prime number p is not necessarily irreducible element in O_k . Let $Irr(O_k)$ be the set of all irreducible elements in O_k . Now we define nine subsets $A_0(k)$, $A_1(k)$, \cdots , $A_k(k)$ of M(k) as follows.

```
\begin{split} A_0(k) = & \{ p \in M(k) \; ; \; g = e_1 = 1 \; \text{(i.e. } p \; \text{remains prime in } O_k, \; \text{so)} \; p \in \operatorname{Irr}(O_k) \} \\ A_1(k) = & \{ p \in M(k) \; ; \; g = 1, \; e_1 = m \; \text{(i.e. } p \; \text{is fully ramified)}, \; p \in \operatorname{Irr}(O_k) \} \\ A_2(k) = & \{ p \in M(k) \; ; \; e_1 + \dots + e_g \leqq m, \; 1 \leqq e_j \; \text{for some} \; j, \; p \in \operatorname{Irr}(O_k) \} \\ A_3(k) = & \{ p \in M(k) \; ; \; g = m, \; e_1 = \dots = e_g = 1 \; \text{(i.e. } p \; \text{splits completely)}, \\ p \in \operatorname{Irr}(O_k) \} \\ A_4(k) = & \{ p \in M(k) \; ; \; g \leqq m, \; e_1 = \dots = e_g = 1 \; \text{(i.e. } p \; \text{is unramified)}, \; p \in \operatorname{Irr}(O_k) \} \\ A_5(k) = & \{ p \in M(k) \; ; \; g = 1, \; e_1 = m \; \text{(i.e. } p \; \text{is fully ramified)}, \; p \notin \operatorname{Irr}(O_k) \} \\ A_6(k) = & \{ p \in M(k) \; ; \; e_1 + \dots + e_g \leqq m, \; 1 \leqq e_j \; \text{for some} \; j, \; p \notin \operatorname{Irr}(O_k) \} \\ A_7(k) = & \{ p \in M(k) \; ; \; g = m, \; e_1 = \dots = e_g = 1 \; \text{(i.e. } p \; \text{splits completely)}, \\ p \notin \operatorname{Irr}(O_k) \} \end{split}
```

 $A_8(k) = \{p \in M(k); g \leq m, e_1 = \cdots = g_q = 1 \text{ (i.e. } p \text{ is unramified), } p \notin Irr(O_k)\}.$ Then we have $M(k) = A_0(k) \cup A_1(k) \cup \cdots \cup A_8(k)$ (disjoint union). In case m = 2, the subsets $A_2(k)$, $A_4(k)$, $A_6(k)$, $A_8(k)$ are of course empty.

The following three theorems are variations on the theme of T. Ono [2]. Theorem 1. If $M(k) = A_0(k)$, then the class number h_k of k is one.

Proof. By the Minkowski lemma, the ideal class group H_k of k is generated by the classes of prime ideals over $p \in M(k)$. Hence we have $h_k=1$.

Lemma 1. Let $aO_k = Q_1 \cdots Q_n$ be the decomposition into prime ideals $(Q_1, \dots, Q_n \text{ are not necessarily distinct, } a \in O_k)$. Suppose that Q_i belongs to an ideal class $x_i \in H_k$ $(1 \le i \le n)$ and x_0 denotes the principal class of H_k . Then a is an irreducible element in O_k if and only if $x_{i_1} \cdots x_{i_m} \ne x_0$ for every proper subset $\{i_1, \dots, i_m\}$ of $\{1, \dots, n\}$.

```
Proof. See Lemma 1.2 in Czogala [1]. Q.E.D. Theorem 2. If \sharp (A_1(k) \cup A_3(k)) \geq 1, then h_k \geq m = (k : Q).
```

^{*) 1-27-10} Kitahara-cho, Tanashi-shi, Tokyo 188.