80. An Application of a Certain Fractional Derivative Operator

By Shigeyoshi OWA*) and H. M. SRIVASTAVA**)

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1990)

The object of the present paper is to introduce and study a linear operator $\mathcal{D}_{0,z}^{\alpha,\beta,\tau}$ which is defined in terms of a certain fractional derivative operator. Various interesting properties of the operator $\mathcal{D}_{0,z}^{\alpha,\beta,\tau}$, including its connection with the Carlson-Shaffer operator $\mathcal{L}(a,c)$, are given. It is also shown how these operators can be applied successfully with a view to proving a number of inclusion and connection theorems involving starlike, convex, and prestarlike functions in the open unit disk \mathcal{U} .

1. Introduction. Let \mathcal{A} be the class of functions of the form:

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disk

$$U = \{z : |z| < 1\}.$$

A function $f(z) \in \mathcal{A}$ is said to be *starlike of order* α if it satisfies the inequality:

(1.2)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha$$

for some α ($0 \le \alpha < 1$) and for all $z \in U$. We denote by $S^*(\alpha)$ the subclass of A consisting of functions which are starlike of order α .

Furthermore, a function $f(z) \in \mathcal{A}$ is said to be *convex of order* α if it satisfies the inequality:

(1.3)
$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha$$

for some α ($0 \le \alpha < 1$) and for all $z \in U$. We denote by $\mathcal{K}(\alpha)$ the subclass of \mathcal{A} consisting of all functions which are convex of order α .

Throughout this paper, it should be understood that functions such as

$$\frac{zf'(z)}{f(z)}$$
 and $\frac{zf''(z)}{f'(z)}$,

which have removable singularities at z=0, have had these singularities removed in statements like (1.2) and (1.3).

It follows readily from (1.2) and (1.3) that (cf. Duren [2, p. 43, Theorem 2.12] for the special case $\alpha = 0$)

(1.4)
$$f(z) \in \mathcal{K}(\alpha) \iff zf'(z) \in \mathcal{S}^*(\alpha).$$

^{*} Department of Mathematics, Kinki University, Higashi-Osaka, Osaka, Japan.

^{**} Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, V8W 3P4, Canada.