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1. Introduction. Let be a real sepa.rable Hilbert space. A cor-
respondence (--multi-valued ma.pping) F: [0, T]--g$ is assumed to
be given. A double arrow -- is used in order to indicate the domain
a.nd the range of a correspondence. The compact interval [0, T] is en-
dowed with the usual Lebesgue measure dr. The ta.rget of this pper is
to establish a sufficient condition which assures the existence of solutions
of a multi-valued differential equation of the form
( ) (t) e F(t, x(t)), x(0)=a,
where a is a fixed vector in .

In Ma.ruya.ma. [8], I ha.ve alrea.dy presented a. solution of this problem
in the special case o =R by making use o the convenient properties
of the weak convergence in the Sobolev space ,([0, T], R) consisting o
functions of [0, T] into R; i.e. if a sequence {x} in ’([0, T], R) weakly
converges to some x* e ,([0, T], R), then

xx* strongly in ([0, T], R), and

2--2" weakly in ([0, T], R).
However it is well-known that this property does not hold in the

space %,([0, T], ) consisting of functions of [0, T] into i dim
(Cf. Cecconi [5] pp. 28-29.) We shall first provide a. new tool to overcome
this difficulty in section 2, a.nd then proceed to the existence theorem or
the differential equation (.) in section 3.

2. A convergence theorem in ’([0, T], ). We denote by 8 (resp.
s)) the Hilbert space endowed with the strong (resp. weak) topology.

Theorem 1. Let be a real separable Hilbert space and consider a
sequence {xn} in the Sobolev space I’P([0, T], ) (pl). Assume that

(i) the set {x,(t)}:__ is bounded (and hence relatively compact)in

for each t e [0, T], and
(ii) there exists some function qp e p([0, T], (0, -t-c)) such that

llicn(t)ll(t) a.e.
Then there exists a subsequence {zn} of {x} and some x*e I’P([0, T],
such that

(a) zn--x* uniformly in on [0, T], and
(b) 2--2" weakly in ([0, T],
Proof. (a) To start with, we shall show the equicontinuity of {x}.

Since qr is integrable, there exists some/) 0 for each )> 0 such that


