52. A Note on p-valently Bazilević Functions

By Shigeyoshi OWA*) and Rikuo YAMAKAWA**)

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1990)

1. Introduction. Let $\mathcal{A}(p)$ be the class of functions of the form

(1.1)
$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \qquad (p \in \mathcal{N} = \{1, 2, 3, \dots\})$$

which are analytic in the unit disk $\mathcal{U}=\{z:|z|<1\}$. A function f(z) in $\mathcal{A}(p)$ is said to be p-valently starlike in \mathcal{U} if it satisfies

(1.2)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0 \qquad (z \in \mathcal{U}).$$

We denote by $S^*(p)$ the subclass of $\mathcal{A}(p)$ consisting of all p-valently starlike functions in \mathcal{U} .

A function belonging to $\mathcal{A}(p)$ is said to be a member of the class $\mathcal{B}(p,\alpha)$ if there exists a function $g(z) \in \mathcal{S}^*(p)$ such that

(1.3)
$$\operatorname{Re}\left\{\frac{zf'(z)f(z)^{\alpha-1}}{g(z)^{\alpha}}\right\} > 0$$

for some α (α >0) and for all $z \in \mathcal{U}$. Then, we note that $\mathcal{B}(p,\alpha)$ is the subclass of p-valently Bazilević functions in the unit disk \mathcal{U} . In particular, the class $\mathcal{B}(1,\alpha)$ when p=1 was studied by Singh [3], and by Obradović ([1], [2]).

2. Main result. In order to derive our result, we need the following lemma due to Obradović [2].

Lemma. If $f(z) \in \mathcal{B}(1, \alpha)$, $\alpha > 0$, then the function F(z) defined by

(2.1)
$$F(z)^{\alpha} = \frac{\alpha+1}{z} \int_{0}^{z} f(t)^{\alpha} dt \qquad (z \in U)$$

is also in the class $\mathcal{B}(1, \alpha)$.

An application of the above lemma leads to

Main result. If $f(z) \in \mathcal{B}(p, \alpha)$, $\alpha > 0$, then the function H(z) defined by

(2.2)
$$H(z)^{\alpha} = \frac{p\alpha + 1}{z} \int_{0}^{z} f(t)^{\alpha} dt \qquad (z \in U)$$

is also in the class $\mathcal{B}(p,\alpha)$.

Proof. We note that $f(z) \in \mathcal{B}(p, \alpha)$ implies that there exists a function $g(z) \in \mathcal{S}^*(p)$ such that

$$\operatorname{Re}\left\{\frac{zf'(z)f(z)^{\alpha-1}}{a(z)^{\alpha}}\right\} > 0 \qquad (z \in U).$$

Letting $f(z) = f_1(z)^p$, $g(z) = g_1(z)^p$, and $H(z) = H_1(z)^p$, we have

^{*)} Department of Mathematics, Kinki University.

^{**} Department of Mathematics, Shibaura Institute of Technology.