51. A Remark on a Class of Certain Analytic Functions

By Seiichi FUKUI

Department of Mathematics, Wakayama University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1990)

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disk $U=\{z; |z|<1\}$.

A function $f(z) \in A$ is said to be a member of the class $S(\alpha)$ if it satisfies

$$\frac{zf'(z)}{f(z)} < 1 + (1-\alpha)z$$

for some α ($0 \le \alpha < 1$) and for all $z \in U$. The symbol < denotes the subordination. It follows from (2) that if $f(z) \in S(\alpha)$ then zf'(z)/f(z) maps the unit disk U onto the domain which is inside the open disk centered at one with radius $1-\alpha$. From this fact, we see that $f(z) \in S(\alpha)$ if and only if

$$\left|\frac{zf'(z)}{f(z)}-1\right|<1-\alpha \qquad (z\in U).$$

We easily see that the class $S(\alpha)$ is a subclass of $S^*(\alpha)$ known as starlike of order α .

In order to derive our main result, we have to recall here the following lemma due to Jack [1] (or Miller and Mocanu [2]).

Lemma. Let w(z) be regular in the unit disk U with w(0)=0. If |w(z)| attains its maximum value on the cercle |z|=r at point z_0 , then

$$z_0 w'(z_0) = k w(z_0),$$

where k is real and $k \ge 1$.

Applying the above lemma, we have

Main theorem. If $f(z) \in A$ satisfies

$$\left|\beta\left(\frac{zf'(z)}{f(z)}-1\right)+(1-\beta)\frac{z^2f''(z)}{f(z)}\right| < 1-\alpha \qquad (z \in U)$$

for some α ($0 \le \alpha < 1$), β ($0 \le \beta < 1$), then $f(z) \in S(\alpha)$.

Proof. Defining the function w(z) by

$$(5) w(z) = \frac{1}{1-\alpha} \left(\frac{zf'(z)}{f(z)} - 1 \right)$$

for $f(z) \in A$, we see that w(z) is regular in the unit disk U and w(0) = 0. Taking the logarithmic differentiations of both sides in (5), we have

(6)
$$\frac{zf''(z)}{f'(z)} = (1-\alpha)w(z) + \frac{(1-\alpha)zw'(z)}{1+(1-\alpha)w(z)}.$$

It follows that

(7)
$$\left|\beta\left(\frac{zf'(z)}{f(z)}-1\right)+(1-\beta)\frac{z^2f''(z)}{f(z)}\right|$$