48. Twisting Symmetry-spins of Pretzel Knots^{*}

By Masakazu TERAGAITO

Department of Mathematics, Kobe University

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1990)

Let π be the commutator subgroup of the knot group of a knot in the 4-sphere S⁴. In [1] it is shown that if π is finite, then $\pi = G \times Z_a$ where $G = \{1\}$, the quaternion group Q(8), the binary icosahedral group I^* or the generalized binary tetrahedral group T(k) and d is an odd integer which is relatively prime to the order of G. Conversely, Yoshikawa [10] has shown that these groups can be realized as the commutator subgroups of the knot groups of knots in S⁴ except $Q(8) \times Z_d$, d > 1. Actually, these knots were constructed by twist-spinning certain 2-bridge knots and pretzel knots. The exceptional groups were realized only as the commutator subgroups of knot groups of knots in homotopy 4-spheres. Note that $Q(8) \times Z_d$ is isomorphic to the fundamental group of a prism manifold M_d , that is, the Seifert fibered manifold with invariants $\{b: (o_1, 0): (2, 1), (2, 1), (2, 1), (2, 1)\}, d =$ |2b+3| (cf. [3], [7]). Since then, by using the deform-spinning introduced by Litherland [6], Kanenobu [4] and the author [9] showed that for d=5, 11, 13 and 19 (equivalently b = -4, 4, -8 and 8), there is a fibered 2-knot in S⁴ whose fiber is the punctured prism manifold M_d° ; thus for these values of d, the groups $Q(8) \times Z_d$ are realized as the commutator subgroups of knot groups of knots in S^4 . It should be noted that a fibered 2-knot with fiber $M_d^{\circ}(d>1)$ cannot be constructed by twist-spins (cf. [2]).

The purpose of this paper is to show that other three values can be realized.

Theorem. There exists a fibered 2-knot in S⁴ whose fiber is a punctured prism manifold M_a° with fundamental group isomorphic to $Q(8) \times Z_a$ for d = 3, 5, 11, 13, 19, 21, 27.

Our examples for the cases d=3, 21, 27 will be constructed by a product of two symmetry-spinnings and 1-twist-spinning for pretzel knots. It is unknown whether there exists such a fibered 2-knot in S^4 for any other value of d.

All maps and spaces are assumed to be in the PL category, and all manifolds are oriented. A circle is identified with the quotient space R/Z. The unit interval [0, 1] is denoted by I.

1. Construction. Let (S^3, K) be a knot and suppose that there are orientation-preserving periodic homeomorphisms $g_i(i=1, 2)$ on (S^3, K) of order n_i such that $g_1g_2=g_2g_1$, $(n_1, n_2)=1$, and $J_1 \cup J_2$ is the Hopf link with $lk(J_1, J_2)=1$, where $J_i=\text{Fix}(g_i)$, (i=1, 2). Let $n=n_1n_2$, $g=g_1g_2$. Let q:

^{*)} Dedicated to Professor Junzo TAO on his 60th birthday.