46. Newforms of Half-integral Weight and the Twisting Operators

By Masaru UEDA

Department of Mathematics, Kyoto University

(Communicated by Kunihiko Kodaira, M. J. A., Sept. 12, 1990)

- o. In the papers [4] and [5], we report some trace relations of the twisting operators on the space of cusp forms of half-integral weight $S(k+1/2, N, \chi)$ and on the Kohnen subspace $S(k+1/2, N, \chi)_K$. In this paper, we shall use these trace relations of the twisting operators in order to decompose the spaces $S(k+1/2, N, \chi)$ and $S(k+1/2, N, \chi)_K$ into nice subspaces, i.e., the space of "newforms" which correspond in one to one way to a system of eigen-values for Hecke operators. For simplicity of statements, we treat only the case of the Kohnen subspace of level $4p^m$, weight k+1/2 and a character χ , where p is an odd prime number, $2 \le m \in \mathbb{Z}$, $2 \le k \in \mathbb{Z}$, and χ is an even character modulo $4p^m$ such that $\chi^2 = 1$. More general results and details will appear in [6].
- 1. We keep to the notations and the assumptions in [4]. Let $\psi = \left(\frac{1}{p}\right)$ be the quadratic residue symbol. Since the twisting operator R_{ψ} for ψ satisfies the identity $R_{\psi}^3 = R_{\psi}$ as operators, R_{ψ} is a semi-simple operator and the eigen values of R_{ψ} are 1, 0, or -1. We denote the σ -eigen subspace of $\tilde{S} = \tilde{S}(p^m, \chi) = S(k+1/2, 4p^m, \chi)_K$, $\sigma = 0$, 1, or -1, by: $\tilde{S}^0 = \tilde{S}^0(p^m, \chi)$ if $\sigma = 0$ and $\tilde{S}^{\pm} = \tilde{S}^{\pm}(p^m, \chi)$ if $\sigma = \pm 1$. Then we have $\tilde{S} = \tilde{S}^0 \oplus \tilde{S}^+ \oplus \tilde{S}^-$ and moreover

$$\tilde{S}^{\scriptscriptstyle 0}\!=\!\operatorname{Ker}\left(R_{\scriptscriptstyle \psi}\,|\,\tilde{S}\right)\!=\!\left[S\!\left(k\!+\!1/2,\,4p^{m-1},\,\chi\!\left(\frac{p}{}\right)\right)_{\scriptscriptstyle K}\right]^{\scriptscriptstyle (p)}\!.$$

Here, we put $[S(k+1/2, 4p^m, \chi)_K]^{(p)} = \{f(pz) | f \in S(k+1/2, 4p^m, \chi)_K\}$. This equality follows from the following lemma.

Lemma. Let N be a positive integer divisible by 4, χ an even character modulo N, and l an odd prime divisor of N. If a function f on \mathfrak{P} is satisfies the following two conditions:

(i) f(z) = f(z+1) for all $z \in \mathfrak{F}$, (ii) $f(lz) \in S(k+1/2, N, \chi)$, then we have

$$f \in S(k+1/2, N/l, \chi(\frac{l}{-})).$$

In particular, if the conductor of $\chi\left(\frac{l}{l}\right)$ does not divide N/l, then f=0.

Remark. This lemma is an analogy of the Theorem 4.6.4 of [1]. From $\tilde{T}(n^2)R_{\psi}=R_{\psi}\tilde{T}(n^2)$ ([5, Prop. (1.7)]), we have the following formulae: