45. Some Trace Relations of Twisting Operators on the Spaces of Cusp Forms of Half-integral Weight

By Masaru Ueda
Department of Mathematics, Kyoto University
(Communicated by Kunihiko Kodaira, M. J. A., Sept. 12, 1990)

In the papers [3] and [4], we calculated the traces of Hecke operators $\tilde{T}\left(n^{2}\right)$ on the space of cusp forms of half-integral weight $S(k+1 / 2, N, \chi)$ and on the Kohnen subspace $S(k+1 / 2, N, \chi)_{K}$. Moreover we found that the above traces are linear combinations of the traces of certain operators on the spaces $S\left(2 k, N^{\prime}\right)$ (N^{\prime} runs over divisors of $N / 2$). In this paper, we report similar trace relations of the twisting operators on the spaces $S(k+1 / 2, N, \chi)$ and $S(k+1 / 2, N, \chi)_{K}$. Details will appear in [5].

Preliminaries. (a) General notations. Let k denote a positive integer. If $z \in C$ and $x \in C$, we put $z^{x}=\exp (x \cdot \log (z))$ with $\log (z)=\log (|z|)+$ $\sqrt{-1} \arg (z), \arg (z)$ being determined by $-\pi<\arg (z) \leq \pi$. Also we put $e(z)=\exp (2 \pi \sqrt{-1} z)$.

Let $\mathscr{F}_{\mathcal{L}}$ be the complex upper half plane. For a complex-valued function $f(z)$ on $\mathscr{S}_{2}, \alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}^{+}(\boldsymbol{R}), \gamma=\left(\begin{array}{ll}u & v \\ w & x\end{array}\right) \in \Gamma_{0}(4)$ and $z \in \mathscr{S}$, we define functions $J(\alpha, z), j(\gamma, z)$ and $f \mid[\alpha]_{k}(z)$ on \mathscr{S} by $: J(\alpha, z)=c z+d, j(\gamma, z)=\left(\frac{-1}{x}\right)^{-1 / 2}$ $\left(\frac{w}{x}\right)(w z+x)^{1 / 2}$ and $f \mid[\alpha]_{k}(z)=(\operatorname{det} \alpha)^{k / 2} J(\alpha, z)^{-k} f(\alpha z)$.

For a real number $x,[x]$ means the greatest integer m with $x \geq m$. $\left.\left|\left.\right|_{p}\right.$ is the p-adic absolute value which is normalized with $| p\right|_{p}=p^{-1}$. See [1, p. 82] for the definition of the Kronecker symbol $\left(\frac{a}{b}\right)$ (a, b integers with $(a, b) \neq(0,0))$. Let N be a positive integer and m an integer $\neq 0$. We write $m \mid N^{\infty}$ if every prime factor of m divides N. For a finite-dimensional vector space V over C and a linear operator T on $V, \operatorname{tr}(T \mid V)$ denotes the trace of T on V.
(b) Modular forms of integral weight. Let N be a positive integer. By $S(2 k, N)$, we denote the space of all holomorphic cusp forms of weight $2 k$ with the trivial character on the group $\Gamma=\Gamma_{0}(N)$.

Let $\alpha \in G L_{2}^{+}(\boldsymbol{R})$. If Γ and $\alpha^{-1} \Gamma \alpha$ are commensurable, we define a linear operator $[\Gamma \alpha \Gamma]_{2 k}$ on $S(2 k, N)$ by : $f\left|[\Gamma \alpha \Gamma]_{2 k}=(\operatorname{det} \alpha)^{k-1} \sum_{\alpha i} f\right|\left[\alpha_{i}\right]_{2 k}$, where α_{i} runs over a system of representatives for $\Gamma \backslash \Gamma \alpha \Gamma$. For a natural number n with $(n, N)=1$, we put $T(n)=T_{2 k, N}(n)=\sum_{a d=n}\left[\Gamma\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) \Gamma\right]_{2 k}$, where the sum is extended over all pairs of integers (a, d) such that $a, d>0, a \mid d, a d=n$. Moreover let Q be a positive divisor of N such that ($Q, N / Q$) =1 and $Q \neq 1$.

