43. q-analogue of de Rham Cohomology Associated with Jackson Integrals. I

By Kazuhiko Аомото
Department of Mathematics, Nagoya University
(Communicated by Kunihiko Kodarra, m. J. A., Sept. 12, 1990)

In this note we want to give a new formulation of Jackson integrals involved in basic hypergeometric functions through the classical Barnes' representations. We define a q-analogue of de Rham cohomology which can be formulated by means of q-version of Sato's b-functions and derive associated holonomic q-difference system. The evaluation of its multiplicity will be given as a number of different asymptotics.

1. Structure of b-functions. We take the elliptic modulus $q=e^{2 \pi i \tau}$, $\operatorname{Im} \tau>0$. Let X be an n dimensional integer lattice $\simeq Z^{n}$. We put $\bar{X}=$ $X \otimes C^{*}$, the n dimensional algebraic torus twisted by q. Let $\chi_{1}, \chi_{2}, \cdots, \chi_{n}$ be a basis of X such that an arbitrary $\chi \in X$ can be uniquely written by $\chi=\sum_{j=1}^{n} \nu_{j} \chi_{j}, \nu_{j} \in Z$. We may identify \bar{X} isomorphic to $X \otimes(C /(2 \pi i / \log q))$ with the direct product of n pieces of C^{*}. The inclusion $X \subset \bar{X}$ can be obtained by identifying χ_{j} with the element $t=(1, \cdots, 1, q, 1, \cdots, 1) \in\left(C^{*}\right)^{n}$. We denote by Q_{j} the shift operator $Q_{j} f(t)=f\left(\chi_{j} \cdot t\right)$ induced by the displacement $t \rightarrow \chi_{j} \cdot t$ for a function f on \bar{X}. We put $Q^{\chi}=Q_{1}^{\nu_{1}} \cdots Q_{n}^{\nu_{n}}$. We consider the q-difference equations
$Q^{\chi} \Phi(t)=b_{x}(t) \Phi(t), \quad \chi \in X$ and $t \in \bar{X}$,
for a set of rational functions $\left\{b_{\chi}(t)\right\}_{x_{\in X}}$, on \bar{X}, which are not identically zero. $\left\{b_{\chi}(t)\right\}_{x \in X}$ satisfies the compatibility condition

$$
\begin{equation*}
b_{x+x^{\prime}}(t)=b_{x}(t) \cdot Q^{x} b_{x^{\prime}}(t) \tag{1.2}
\end{equation*}
$$

so that $\left\{b_{x}(t)\right\}_{\chi_{\in X}}$ defines a 1-cocycle on X with values in $R^{\times}(\bar{X})$ the multiplicative abelian group consisting of non-zero rational functions on \bar{X}. We denote by $R(\bar{X})$ the field of rational functions on \bar{X}. $\left\{b_{x}(t)\right\}_{x \in X}$ is a coboundary if and only if $b_{x}(t)=Q^{x} \varphi(t) / \varphi(t)$ for $\varphi \in R^{\times}(\bar{X})$. We write the corresponding 1-cohomology by $H^{1}\left(X, R^{\times}(\bar{X})\right)$.

We put $(x)_{\infty}=\prod_{\nu=0}^{\infty}\left(1-x q^{\nu}\right)$ and $(x)_{n}=(x)_{\infty} /\left(x q^{n}\right)_{\infty}$ for $n \in Z$. Then the following important result holds.

Proposition. An arbitrary cocycle $\left\{b_{x}(t)\right\}_{x_{\in X}}$ modulo a coboundary can be expressed by (1.1), where Φ denotes a q-multiplicative function on \bar{X} written by

$$
\begin{equation*}
\Phi=\prod_{j=1}^{n} t_{j}^{\alpha_{j}} \prod_{j=1}^{m} \frac{\left(a_{j}^{\prime} t^{\mu_{j}}\right)_{\infty}}{\left(a_{j} t^{\mu_{j}}\right)_{\infty}} \tag{1.3}
\end{equation*}
$$

for some non-negative integer m and $\alpha_{j}, a_{j}^{\prime}, a_{j} \in C$, and for $\mu_{j} \in \check{X}=\operatorname{Hom}(X$, $Z)$. $t^{\mu_{j}}$ denotes a monomial $t_{1}^{\mu_{j}\left(x_{1}\right)} \cdots t_{n}^{\mu_{j}\left(x_{n}\right)} . \quad a_{j}$ or a_{j}^{\prime} may vanish or may not.

This is a q-version of Sato's theorem in [6] and can be proved in a

