43. q-analogue of de Rham Cohomology Associated with Jackson Integrals. I

By Kazuhiko A0M0T0
Department of Mathematics, Nagoya University

(Communicated by Kunihiko Kodaira, M. J. A., Sept. 12, 1990)

In this note we want to give a new formulation of Jackson integrals involved in basic hypergeometric functions through the classical Barnes' representations. We define a q-analogue of de Rham cohomology which can be formulated by means of q-version of Sato's b-functions and derive associated holonomic q-difference system. The evaluation of its multiplicity will be given as a number of different asymptotics.

1. Structure of b-functions. We take the elliptic modulus $q=e^{2\pi i\tau}$, $\operatorname{Im} \tau>0$. Let X be an n dimensional integer lattice $\simeq Z^n$. We put $\overline{X}=X\otimes C^*$, the n dimensional algebraic torus twisted by q. Let $\chi_1, \chi_2, \cdots, \chi_n$ be a basis of X such that an arbitrary $\chi\in X$ can be uniquely written by $\chi=\sum_{j=1}^n \nu_j\chi_j, \ \nu_j\in Z$. We may identify \overline{X} isomorphic to $X\otimes (C/(2\pi i/\log q))$ with the direct product of n pieces of C^* . The inclusion $X\subset \overline{X}$ can be obtained by identifying χ_j with the element $t=(1,\cdots,1,q,1,\cdots,1)\in (C^*)^n$. We denote by Q_j the shift operator $Q_jf(t)=f(\chi_j\cdot t)$ induced by the displacement $t\to \chi_j\cdot t$ for a function f on \overline{X} . We put $Q^\chi=Q_1^{\nu_1}\cdots Q_n^{\nu_n}$. We consider the q-difference equations

(1.1)
$$Q^{\chi}\Phi(t) = b_{\chi}(t)\Phi(t), \quad \chi \in X \text{ and } t \in \overline{X},$$

for a set of rational functions $\{b_x(t)\}_{x \in X}$, on \overline{X} , which are not identically zero. $\{b_x(t)\}_{x \in X}$ satisfies the compatibility condition

$$(1.2) b_{x+x'}(t) = b_x(t) \cdot Q^x b_{x'}(t),$$

so that $\{b_{\chi}(t)\}_{\chi\in X}$ defines a 1-cocycle on X with values in $R^{\times}(\overline{X})$ the multiplicative abelian group consisting of non-zero rational functions on \overline{X} . We denote by $R(\overline{X})$ the field of rational functions on \overline{X} . $\{b_{\chi}(t)\}_{\chi\in X}$ is a coboundary if and only if $b_{\chi}(t)=Q^{\chi}\varphi(t)/\varphi(t)$ for $\varphi\in R^{\times}(\overline{X})$. We write the corresponding 1-cohomology by $H^{1}(X,R^{\times}(\overline{X}))$.

We put $(x)_{\infty} = \prod_{\nu=0}^{\infty} (1-xq^{\nu})$ and $(x)_n = (x)_{\infty}/(xq^n)_{\infty}$ for $n \in \mathbb{Z}$. Then the following important result holds.

Proposition. An arbitrary cocycle $\{b_{\chi}(t)\}_{\chi \in X}$ modulo a coboundary can be expressed by (1.1), where Φ denotes a q-multiplicative function on \overline{X} written by

(1.3)
$$\Phi = \prod_{j=1}^{n} t_{j}^{\alpha_{j}} \prod_{j=1}^{m} \frac{(\alpha'_{j} t^{\mu_{j}})_{\infty}}{(\alpha_{j} t^{\mu_{j}})_{\infty}}$$

for some non-negative integer m and α_j , α'_j , $\alpha_j \in C$, and for $\mu_j \in \check{X} = \operatorname{Hom}(X, Z)$. t^{μ_j} denotes a monomial $t_1^{\mu_j(\chi_1)} \cdots t_n^{\mu_j(\chi_n)}$. α_j or α'_j may vanish or may not. This is a q-version of Sato's theorem in [6] and can be proved in a