40. A Note on the Mean Value of the Zeta and L-functions. VII

By Aleksandar IVIĆ*) and Yoichi MOTOHASHI**)

(Communicated by Kunihiko KODAIRA, M. J. A., June 12, 1990)

1. Let $E_2(T)$ be the error-term in the asymptotic formula for the fourth power mean of the Riemann zeta-function, so that

(1)
$$\int_{0}^{T} \left| \zeta \left(\frac{1}{2} + it \right) \right|^{4} dt = TP_{4}(\log T) + E_{2}(T)$$

with a certain polynomial P_4 of degree 4. As has been pointed out already in the preceding note [3] of this series, Corollary 2 in it gives an alternative proof of Zavorotnyi's claim [5]:

(2)
$$E_2(T) = O(T^{(2/3)+\epsilon})$$

for any fixed $\varepsilon > 0$. In fact this is simply a resultant of combining the corollary with the spectral mean of Hecke series ([4]):

(3)
$$\sum_{s_j \leq x} \alpha_j H_j \left(\frac{1}{2}\right)^4 \ll x^{2+\varepsilon}.$$

Here $\{\lambda_j = \kappa_j^2 + (1/4), \kappa_j > 0\}$ is the discrete spectrum of the non-Euclidean Laplacian on $SL(2, \mathbb{Z})$, and $\alpha_j = |\rho_j(1)|^2 (\cosh \pi \kappa_j)^{-1}$ with the first Fourier coefficient $\rho_j(1)$ of the Maass wave form corresponding to λ_j to which the Hecke series H_j is attached.

Though (2) is the hitherto best result on the upper bound for $E_2(T)$ it is generally believed that $T^{(1/2)+s}$ may be the true order of it. The aim of the present note is to study this problem from the opposite direction. Namely we are going to show that under a hypothesis of the type of nonvanishing theorems for automorphic *L*-functions one may deduce an Ω -result on $E_2(T)$ from [Theorem, 3].

To formulate the hypothesis we denote by $\{\mu_n\}$, arranged in the increasing order, the mutually different members in the set $\{\kappa_i\}$. And we put

$$G_h = \sum_{s_j = \mu_h} \alpha_j H_j \left(\frac{1}{2}\right)^3.$$

Now we set out

Hypothesis A. Not all G_h vanish.

Then we have

Theorem. Under Hypothesis A $E_2(T) = \Omega(T^{1/2})$ holds.

We note that Zavorotnyi's argument [5] does not seem to be able to yield our theorem. Also the theorem should be compared with the Ω -result on the mean square of $|\zeta((1/2)+it)|$ due to Good [1] (for the latest develop-

^{*)} Serbian Academy of Sciences, Beograd, Yugoslavia.

^{**)} Department of Mathematics, College of Science and Technology, Nihon University, Tokyo, Japan.