39. Askey-Wilson Polynomials and the Quantum Group $\mathrm{SU}_{q}(2)$

By Masatoshi Noumi*) and Katsuhisa Mimachi**)
(Communicated by Shokichi Iyanaga, M. J. A., June 12, 1990)

The Askey-Wilson polynomials are a 4-parameter family of q-orthogonal polynomials expressed by the basic hypergeometric series ${ }_{4} \varphi_{3}$. As special cases, it provides various types of q-Jacobi polynomials such as little, big and continuous q-Jacobi polynomials. In this note, we report that a (partially discrete) 4-parameter family of Askey-Wilson polynomials is realized as "doubly associated spherical functions" on the quantum group $S U_{q}(2)$.

In [2], Koornwinder realized a 2-parameter subfamily of Askey-Wilson polynomials as zonal spherical functions on $S U_{q}(2)$ in an infinitesimal sense. Generalizing his arguments to non-zonal cases, we obtain a 4-parameter family of Askey-Wilson polynomials that are connected to these polynomials as Jacobi polynomials are to Legendre polynomials in the $S U(2)$ case. From this interpretation, we also derive an addition formula for Koornwinder's 2-parameter extension of the continuous q-Legendre polynomials. Details will be given elsewhere.

1. Throughout this note, we fix a real number q with $0<q<1$. The algebra of functions $A(G)$ on the quantum group $G=S U_{q}(2)$ is the C-algebra generated by x, u, v, y with fundamental relations

$$
\left\{\begin{array}{l}
q x u=u x, q x v=v x, q u y=y u, q v y=y v \tag{1.1}\\
u v=v u, x y-q^{-1} u v=y x-q v u=1
\end{array}\right.
$$

and the ${ }^{*}$-structure determined by $x^{*}=y$ and $v^{*}=-q u$. The quantized universal enveloping algebra $U_{q}(s u(2))$ is the C-algebra generated by k, k^{-1}, e, f with relations

$$
\left\{\begin{array}{l}
k k^{-1}=k^{-1} k=1, k e k^{-1}=q e, k f k^{-1}=q^{-1} f, \tag{1.2}\\
e f-f e=\left(k^{2}-k^{-2}\right) /\left(q-q^{-1}\right),
\end{array}\right.
$$

and the ${ }^{*}$-structure with $k^{*}=k$ and $e^{*}=f$. As for the Hopf algebra structure, we take the coproduct determined by

$$
\Delta(k)=k \otimes k, \quad \Delta(e)=k^{-1} \otimes e+e \otimes k, \quad \Delta(f)=k^{-1} \otimes f+f \otimes k
$$

The algebra of functions $A(G)$ has a natural structure of two-sided $U_{q}(s u(2))$ module. For each $j \in(1 / 2) N$, there exists a unique $2 j+1$ dimensional irreducible representation of G of highest weight q^{j} with respect to $k \in U_{q}(s u(2))$. By V, we denote the corresponding right $A(G)$-comodule with coaction R : $V_{j} \rightarrow V_{j} \otimes A(G)$. We fix a C-basis $\left(v_{m}^{j}\right)_{m \in I j}$ for V_{j}, with $I_{j}=\{j, j-1, \cdots,-j\}$, such that the differential representation takes the form
*) Department of Mathematics, College of Arts and Sciences, University of Tokyo.
**) Department of Mathematics, Nagoya University.

