39. Askey-Wilson Polynomials and the Quantum Group $SU_a(2)$

By Masatoshi Noumi*) and Katsuhisa Mimachi**) (Communicated by Shokichi Iyanaga, m. J. A., June 12, 1990)

The Askey-Wilson polynomials are a 4-parameter family of q-orthogonal polynomials expressed by the basic hypergeometric series $_4\varphi_3$. As special cases, it provides various types of q-Jacobi polynomials such as little, big and continuous q-Jacobi polynomials. In this note, we report that a (partially discrete) 4-parameter family of Askey-Wilson polynomials is realized as "doubly associated spherical functions" on the quantum group $SU_q(2)$.

- In [2], Koornwinder realized a 2-parameter subfamily of Askey-Wilson polynomials as zonal spherical functions on $SU_q(2)$ in an infinitesimal sense. Generalizing his arguments to non-zonal cases, we obtain a 4-parameter family of Askey-Wilson polynomials that are connected to these polynomials as Jacobi polynomials are to Legendre polynomials in the SU(2) case. From this interpretation, we also derive an addition formula for Koornwinder's 2-parameter extension of the continuous q-Legendre polynomials. Details will be given elsewhere.
- 1. Throughout this note, we fix a real number q with 0 < q < 1. The algebra of functions A(G) on the quantum group $G = SU_q(2)$ is the C-algebra generated by x, u, v, y with fundamental relations

(1.1)
$$\begin{cases} qxu = ux, \ qxv = vx, \ quy = yu, \ qvy = yv, \\ uv = vu, \ xy - q^{-1}uv = yx - qvu = 1, \end{cases}$$

and the *-structure determined by $x^*=y$ and $v^*=-qu$. The quantized universal enveloping algebra $U_q(su(2))$ is the C-algebra generated by k, k^{-1} , e, f with relations

(1.2)
$$\begin{cases} kk^{-1} = k^{-1}k = 1, \ kek^{-1} = qe, \ kfk^{-1} = q^{-1}f, \\ ef - fe = (k^2 - k^{-2})/(q - q^{-1}), \end{cases}$$

and the *-structure with $k^*=k$ and $e^*=f$. As for the Hopf algebra structure, we take the coproduct determined by

$$\Delta(k) = k \otimes k$$
, $\Delta(e) = k^{-1} \otimes e + e \otimes k$, $\Delta(f) = k^{-1} \otimes f + f \otimes k$.

The algebra of functions A(G) has a natural structure of two-sided $U_q(su(2))$ -module. For each $j \in (1/2)N$, there exists a unique 2j+1 dimensional irreducible representation of G of highest weight q^j with respect to $k \in U_q(su(2))$. By V_j we denote the corresponding right A(G)-comodule with coaction $R: V_j \rightarrow V_j \otimes A(G)$. We fix a G-basis $(v_m^j)_{m \in I_j}$ for V_j , with $I_j = \{j, j-1, \cdots, -j\}$, such that the differential representation takes the form

^{*)} Department of Mathematics, College of Arts and Sciences, University of Tokyo.

^{**)} Department of Mathematics, Nagoya University.