36. A Note on the Artin Map. II*)

By Takashi ONO

Department of Mathematics, The Johns Hopkins University (Communicated by Shokichi IYANAGA, M. J. A., June 12, 1990)

This is a continuation of my preceding paper [2] which will be referred to as (I) in this paper.¹⁾ In (I), we defined, for a finite Galois extension K/k of number fields, a monoid homomorphism (a generalized Artin map)

$$\alpha_{K/k}: I(K/k) \longrightarrow C[G]_0, G = G(K/k),$$

where I(K/k) denotes the monoid of nonzero integral ideals α of k whose prime factors are all unramified in K and $C[G]_0$ denotes the center of the group ring C[G]. We, then, obtained a condition for the finiteness of the image of $\alpha_{K/k}$ in terms of characters (I. Theorem). In this paper, we shall study the kernel of $\alpha_{K/k}$ in a similar way. It will turn out that the structure of the kernel becomes simpler if the group G becomes away from being abelian.

§ 1. Center of G. Let G be a finite group. We shall denote by Irr(G) the set of all irreducible C-characters of G. For each $\chi \in Irr(G)$, we put

$$\chi^*(x) = \frac{\chi(x)}{\chi(1)}, \quad x \in G.$$

As is well-known, we have $|\chi^*(x)| \le 1$ for all x, χ^2 . In this context, it is to be noted that

- (1.1) $|\chi^*(x)|=1$ for all x, $\chi \Leftrightarrow G$ is abelian.
- In this paper, we are interested in the following property (Z) of G which is weaker than (1.1):
- (Z) There is an $x \neq 1$ in G such that $|\chi^*(x)| = 1$ for all $\chi \in Irr(G)$.
- (1.2) Proposition. G satisfies $(Z) \Leftrightarrow the \ center \ of \ G$ is nontrivial.
- *Proof.* For an $x \in G$, let Z(x) be the centralizer of x. Our assertion follows from the following chains of equivalences: x is in the center of $G \Leftrightarrow G = Z(x) \Leftrightarrow [G] = [Z(x)]^{s} \Leftrightarrow \sum_{\mathbf{z} \in \operatorname{Irr}(G)} \chi(1)^{2} = [G] = [Z(x)] = \sum_{\mathbf{z} \in \operatorname{Irr}(G)} |\chi(x)|^{2} \Leftrightarrow |\chi(x)| = \chi(1)$ for all $\chi \Leftrightarrow |\chi^{*}(x)| = 1$ for all χ . Q.E.D.
- (1.3) Remark. Any nilpotent group $G(\neq 1)$ satisfies (Z). On the other hand, let $G=H\cdot\langle\tau\rangle$, a semidirect product of an abelian normal subgroup H of odd (≥ 3) order and a cyclic subgroup $\langle\tau\rangle$ such that $\tau\sigma\tau^{-1}=\sigma^{-1}$, $\sigma\in H$, $\tau^2=1$. Then G does not satisfy (Z) as its center is trivial. Such a group G appears as the Galois group of K/Q where K is the Hilbert class field of a

^{*)} To the memory of Michio Kuga.

¹⁾ For example, we mean by (I.2) the item (2) in (I).

²⁾ As for elementary facts on characters, see first three chapters (pp. 1-46) of I.M. Isaacs, Character Theory of Finite Groups, Academic Press, New York-London, 1976.

⁸⁾ We denote by [S] the cardinality of a set S.