36. A Note on the Artin Map. $\mathrm{II}^{*)}$

By Takashi Ono
Department of Mathematics, The Johns Hopkins University
(Communicated by Shokichi Ifanaga, m. J. A., June 12, 1990)

This is a continuation of my preceding paper [2] which will be referred to as (I) in this paper. ${ }^{1)}$ In (I), we defined, for a finite Galois extension K / k of number fields, a monoid homomorphism (a generalized Artin map)

$$
\alpha_{K / k}: I(K / k) \longrightarrow C[G]_{0}, G=G(K / k)
$$

where $I(K / k)$ denotes the monoid of nonzero integral ideals \mathfrak{a} of k whose prime factors are all unramified in K and $C[G]_{0}$ denotes the center of the group ring $C[G]$. We, then, obtained a condition for the finiteness of the image of $\alpha_{K / k}$ in terms of characters (I. Theorem). In this paper, we shall study the kernel of $\alpha_{k / k}$ in a similar way. It will turn out that the structure of the kernel becomes simpler if the group G becomes away from being abelian.
§ 1. Center of \boldsymbol{G}. Let G be a finite group. We shall denote by $\operatorname{Irr}(G)$ the set of all irreducible C-characters of G. For each $\chi \in \operatorname{Irr}(G)$, we put

$$
\chi^{*}(x)=\frac{\chi(x)}{\chi(1)}, \quad x \in G
$$

As is well-known, we have $\left|\chi^{*}(x)\right| \leqq 1$ for all $x, \chi .{ }^{2)}$ In this context, it is to be noted that
(1.1) $\quad|\chi *(x)|=1 \quad$ for all $x, \chi \Leftrightarrow G$ is abelian.

In this paper, we are interested in the following property (Z) of G which is weaker than (1.1) :
(Z) There is an $x \neq 1$ in G such that $\left|\chi^{*}(x)\right|=1$ for all $\chi \in \operatorname{Irr}(G)$.
(1.2) Proposition. G satisfies $(Z) \Leftrightarrow$ the center of G is nontrivial.

Proof. For an $x \in G$, let $Z(x)$ be the centralizer of x. Our assertion follows from the following chains of equivalences: x is in the center of $G \Leftrightarrow G=Z(x) \Leftrightarrow[G]=[Z(x)]^{3)} \Leftrightarrow \sum_{x \in \operatorname{Irr}(G)} \chi(1)^{2}=[G]=[Z(x)]=\sum_{x \in \operatorname{Irr}(G)}|\chi(x)|^{2} \Leftrightarrow$ $|\chi(x)|=\chi(1)$ for all $\chi \Leftrightarrow\left|\chi^{*}(x)\right|=1$ for all χ. Q.E.D. (1.3) Remark. Any nilpotent group $G(\neq 1)$ satisfies (Z). On the other hand, let $G=H \cdot\langle\tau\rangle$, a semidirect product of an abelian normal subgroup H of odd ($\geqq 3$) order and a cyclic subgroup $\langle\tau\rangle$ such that $\tau \sigma \tau^{-1}=\sigma^{-1}, \sigma \in H$, $\tau^{2}=1$. Then G does not satisfy (Z) as its center is trivial. Such a group G appears as the Galois group of K / \boldsymbol{Q} where K is the Hilbert class field of a

[^0]
[^0]: *) To the memory of Michio Kuga.

 1) For example, we mean by (I.2) the item (2) in (I).
 2) As for elementary facts on characters, see first three chapters (pp. 1-46) of I. M.Isaacs, Character Theory of Finite Groups, Academic Press, New York-London, 1976.
 3) We denote by $[S]$ the cardinality of a set S.
