34. Construction of Certain Maximal p-ramified Extensions over Cyclotomic Fields

By Humio ICHIMURA

Department of Mathematics, Yokohama City University

(Communicated by Shokichi IYANAGA, M. J. A., June 12, 1990)

§1. Introduction. Let p and m be, respectively, a fixed odd prime number and a fixed integer with (p, m)=1 and let $k=Q(\cos(2\pi/m))$ and $K_{\infty}=k(\mu_{p^{\infty}})$. Denote by Ω_p the maximal pro-p abelian extension over K_{∞} unramified outside p. Its odd part Ω_p^- contains the field

 $C = K_{\infty}(\varepsilon^{1/p^{\infty}} | \text{ all circular units } \varepsilon \text{ of } K_{\infty}).$

The extension Ω_p^-/C is of very delicate nature, and for example, when k=Q, it is closely related to the Vandiver conjecture at p. We shall give a system of generators for the extension Ω_p^-/C (except for its " ω_p -component") by using the theory of special units of F. Thaine [3].

§ 2. Statement of the results. Fix an even Z_p -valued character \mathfrak{X} of $\mathcal{A}_p = \operatorname{Gal}(k(\mu_p)/k)$, and let \mathfrak{X}' be the odd character associated to \mathfrak{X} , i.e., $\mathfrak{X}' = \omega_p \cdot \mathfrak{X}^{-1}$. Here, ω_p is the Teichmüller character of \mathcal{A}_p . Since the Galois group \mathcal{A}_p acts on the pro-p abelian groups $\operatorname{Gal}(\Omega_p^-/K_\infty)$ and $\operatorname{Gal}(C/K_\infty)$ in the usual manner, we can decompose them by the \mathcal{A}_p -action. Let $\Omega_p(\mathfrak{X}')$ be the maximal intermediate field of Ω_p^-/K_∞ fixed by the ψ -components $\operatorname{Gal}(\Omega_p^-/K_\infty)(\psi)$ for all odd Z_p -valued characters ψ of \mathcal{A}_p except \mathfrak{X}' . Define the intermediate field $C(\mathfrak{X}')$ of C/K_∞ similarly.

To give a system of generators of the extension $\Omega_p(X')/C(X')$, we have to recall from [2] and introduce some notations. For a while, we fix a natural number n and let $K_n = k(\mu_{p^{n+1}})$. For an abelian group A and an integer N, we abbreviate the quotient A/NA as A/N. Let M be any power of p. Regarding $(\mathbb{Z}/M)[\Delta_p]$ as a subring of $(\mathbb{Z}/M)[\operatorname{Gal}(K_n/Q)]$, we decompose $(\mathbb{Z}/M)[\operatorname{Gal}(K_n/Q)]$ by the Δ_p -action. Denote its χ -component by $\Lambda_{n,\chi,M}$. Let E_n and C_n be, respectively, the group of units and that of circular units of K_n . By a theorem on units in a Galois extension and that $[E_n : C_n] < \infty$, we see that there exists a Galois stable submodule C'_n of C_n such that C'_n is cyclic over the group ring $\mathbb{Z}[\operatorname{Gal}(K_n/Q)]$ and $[E_n : C'_n] < \infty$. In the following, assume that $\chi \neq \operatorname{trivial}(\chi' \neq \omega_p)$. Since $\chi \neq \operatorname{trivial}$, the χ -component $(C'_n/M)(\chi)$ is free and cyclic over $\Lambda_{n,\chi,M}$ for any M. Let $p^{\delta(n,\chi)}$ be the exponent of $(E_n/C'_n)(p)(\chi)$, and we abbreviate $\Lambda_{n,\chi,p^{\delta\delta(n,\chi)}}$ as $\Lambda_{n,\chi}$. For an integer i, we denote by ζ_i a fixed primitive i-th root of unity. Let

$$\xi_n(1) = \prod_{i \mid mp^{n+1}} ((1 - \zeta_i) (1 - \zeta_i^{-1}))^{a_i}$$

be a fixed generator of $(C'_n/p^{2\delta(n,\chi)})(\chi)$ over the group ring $\Lambda_{n,\chi}$, here a_i is an element of $\Lambda_{n,\chi}$. For a prime number l with $l \equiv 1 \pmod{mp^{n+1}}$, define an