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1. Introduction. Let p and m be, respectively, a fixed odd prime
number and a fixed integer with (p, m)=l and let tc=Q(cos(2:/m)) and
K=/c(/). Denote by /2 the maximal pro-p abelian extension over K
unramified outside p. Its odd part 2 contains the field

C----K(, all circular units, of K).
The extension ;/C is of very delicate nature, and for example, when
it is closely related to the Vandiver conjecture at p. We shall give a sys-
tem of generators for the extension 9;/C (except for its "o-component") by
using the theory of special units of F. Thaine [3].

2. Statement of the results. Fix an even Z-valued character Z of

/-Gal(/c(/)//c), and let X’ be the odd character associated to X, i.e.,

.X-. Here, , is the Teichmtiller character of /. Since the Galois group

/ acts on the pro-p abelian groups Gal(/2/K) and Gal(C/Koo) in the usual
manner, we can decompose them by the z/-action. Let 9(X’) be the maximal
intermediate field of 9/Koo fixed by the +-components Gal(/2/K)(+) for
all odd Z-valued characters + of / except z’. Define the intermed,iate field
C(x’) of C/K similarly.
To give a system of generators of the extension 9(X’)/C(Z’), we have to
recall from [2] and introduce some notations. For a while, we fix a natural
number n and let K=/c(p/,). For an abelian group A and an integer N,
we abbreviate the quotient A/NA as A/N. Let M be any power of p.
Regarding (Z/M)[I] as a subring of (Z/M)[Gal(K/Q)], we decompose
(Z/M)[Gal(K/Q)] by the lfaction. Denote its X-component by A,,. Let
E and C. be, respectively, the group of units and that of circular units of

K. By a theorem on units in a Galois extension and that [E C]< oo, we
see that there exists a Galois stable .submodule C’ of C. such that C’ is cyclic
over the group ring Z[Gal(K/Q)] and [E .C’]<oo. In the following,

assume that X=/=trivial (Z’=/=o). Since Xq=trivial, the X-component (C’/M)(Z)
is free and cyclic over A,, for any M. Let p(’) be the exponent of
(E/C’)(p)(X), and we abbreviate A,,,,,, as A,. For an integer i, we
denote by , a fixed primitive i-th root of unity. Let

n(1)= I ((1--)(1-- ))
tlmp+l

be a fixed generator of (C’/p(’z))(X) over the group ring A,z, here a, is an
element of A,. For a prime number with l----1 (modmp"/O, define an


