28. A Note on the Hilbert Irreducibility Theorem

The Irreducibility Theorem and the Strong Approximation Theorem*),**)

By Yasuo Morita

Mathematical Institute, Tohoku University

(Communicated by Shokichi Iyanaga, M. J. A., April 12, 1990)

Introduction. Let k be a finite algebraic number field. For any irreducible polynomial $f(t,x) \in k(t)[x]$, let $U_{f,k}$ denote the set consisting of all $s \in k$ such that f(s,x) is defined and irreducible in k[x]. A subset of k of this form is called a *basic Hilbert subset* of k. Further, an intersection of a non-empty Zariski open subset of k and a finite number of basic Hilbert subsets of k is called a *Hilbert subset* of k.

In this paper, we obtain the following theorem:

Main theorem. Let Ω be the set of all primes of a finite algebraic number field k, let $\mathfrak q$ be an element of Ω , and let S be a finite subset of $\Omega - \{\mathfrak q\}$ such that $\Omega - S - \{\mathfrak q\}$ contains only non-archimedean primes of k. We choose an element $\alpha_{\mathfrak p}$ of k for each $\mathfrak p \in S$. Then, for any positive number $\mathfrak s$ and for any Hilbert subset H of k, there exists an element $\alpha \in H$ such that

$$\begin{cases} |\alpha - \alpha_{\mathfrak{p}}|_{\mathfrak{p}} < \varepsilon & \text{for any } \mathfrak{p} \in S, \\ |\alpha|_{\mathfrak{p}} \le 1 & \text{for any } \mathfrak{p} \in \Omega - S - \{\mathfrak{q}\}. \end{cases}$$

Clearly, this theorem shows that the Hilbert irreducibility theorem and the strong approximation theorem for k are compatible. It is easy to reduce this theorem to the Hilbert irreducibility theorem if S contains only non-archimedean primes, but it seems nontrivial if S contains archimedean primes.

We prove the theorem by modifying an argument in S. Lang [1], VIII, § 1.

The author would like to thank Professor Peter Roquette for valuable comments.

§ 1. Hilbert sets and rational points of algebraic curves. Let k be a finite algebraic number field, and let H be a Hilbert subset of k. Then, for some non-empty Zariski open subset O of k, we can write $O \cap H = O \cap (\bigcap_{i=1}^m U_{f_i,k})$, where $f_i(t,x)$ is an irreducible polynomial in k(t)[x] and $U_{f_i,k}$ is the basic Hilbert subset corresponding to f_i . Here, by multiplying an element of k[t] and changing O if necessary, we may assume $f_i(t,x) \in k[t,x]$.

Let f(t,x) be one of the $f_i(t,x)$. Let $\overline{k(t)}$ be the algebraic closure of k(t), and write f(t,x)=a(t) $\prod_{h=1}^{l}(x-\alpha_h)$ $(a(t)\in k[t], \alpha_h\in \overline{k(t)})$. Let f(t,x)=

^{*)} Dedicated to Professor Ichiro SATAKE on his sixtieth birthday.

^{**} This result was obtained when the author was a member of the Sonderforschungsbereich 170, Geometrie und Analysis in Göttingen.