27. Spectral Properties of the Operator Associated with a Retarded Functional Differential Equation in Hilbert Space

By Jin-Mun Jeong*)

Department of Mathematics, Osaka University

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1989)

In [4] the fundamental result on the structural operator for the linear retarded functional differential equation

(1)
$$du(t)/dt = A_0 u(t) + A_1 u(t-h) + \int_{-h}^{0} a(s) A_2 u(t+s) ds$$

in a Hilbert space H was established. Here, $-A_0$ is the operator associated with a bounded sesquilinear form a(u,v) defined in $V\times V$ and satisfying Gårding's inequality

Re
$$a(u, u) \ge c ||u||^2$$
, $c > 0$,

where V is a Hilbert space densely and continuously imbedded in H and $\| \ \|$ is the norm of V. It is known that A_0 generates an analytic semigroup in both of H and V^* . It is assumed that A_1 and A_2 are bounded linear operators from V to V^* and $A_iA_0^{-1}$, i=1, 2, are bounded also in H. The real valued function a(s) is assumed to be Hölder continuous in [-h,0].

Let S(t): $M = H \times L^2(-h, 0; V) \rightarrow M$ be the solution semigroup for (1) considered as an equation in V^* : for $g = (g^0, g^1) \in M$

$$S(t)g = (u(t;g), u(t+\cdot;g)),$$

where u(t;g) is the mild solution of (1) satisfying the initial conditions (2) $u(0;g)=g^0$, $u(s;g)=g^1(s)$ for $s \in [-h,0)$.

In this paper we investigate the spectral properties of the infinitesimal generator A of S(t) in the special case where $A_1 = \gamma A_0$ with some real constant γ , $A_2 = A_0$ and the imbedding $V \subset H$ is compact. Hence, in what follows throughout this paper we consider the equation

(3)
$$du(t)/dt = A_0 u(t) + \gamma A_0 u(t-h) + \int_{-h}^{0} a(s) A_0 u(t+s) ds$$

with A_0 , γ , α satisfying the assumptions stated above.

According to the Riesz-Schauder theory A_0 has a discrete spectrum: $\sigma(A_0) = \{\mu_j : j=1, 2, \cdots\}$. Set

(4)
$$m(\lambda) = 1 + \gamma e^{-\lambda h} + \int_{-h}^{0} e^{\lambda s} a(s) ds.$$

It is clear that $m(\lambda)$ is an entire function and

(5) $m(\lambda) \rightarrow 1$ as Re $\lambda \rightarrow +\infty$.

The following lemmas are proved as Theorems 6.1 and 7.2 of

^{*} Graduate student from Korea.