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1. Introduction. The purpose of this paper is to generalize the
results obtained for binomial differential equations ([9]) to general alge-
braic differential equations. Let a, (7=0,1,---,n; k=0,1,---,q,) be
entire functions without common zero for which a,, -a,,,+0. Put

%qn
qj
Q,(z, W)=ICZ:0 aw*, (g,=deg Q)

and we consider the differential equation (=D.E.)

(1) f Q,(z, W) (W) =Q, (2, w)
i=1
under the condition

We suppose that the D.E. (1) is irreducible over the field of meromorphic
functions in |2|<oco and that it admits at least one nonconstant y-valued
algebroid solution w=w(z) in the complex plane. We say that the
solution w is admissible if
T(r, f|an,,)=0(T(r, w))

for r—oo, possibly outside a set of finite linear measure, where f=a
(j=0,1,---,m; k=0,1, -- -, q,). For example, when all a;, are polynomials,
a transcendental algebroid solution of the D.E. (1) is admissible.

In this paper we denote by E a subset of [0, o0) for which m(E)<co
and by K a positive constant. E or K does not always mean the same
one when they will appear in the following. Further, the term ‘“alge-
broid” (resp. “meromorphic”’) will mean algebroid (resp. meromorphic)
in the complex plane. We use the standard notation of the Nevanlinna
theory of meromorphic ([3]) or algebroid functions ([6], [10], [11]).

2. Lemmas. In this section, we shall give three lemmas for later
use.

Lemma 1. Let v be a transcendental algebroid function such that
v and v’ have at most a finite number of poles. Then, for some positive
constants K, and K, it holds

M(r,)<K,+KryM(r,v) (rekE),
where M(r,v)=max,,_, |v(2)| ([6].
Lemma 2. Let g be a transcendental entire function. Then,
M(r,9)=2M(r, 9)* (rek) ([4D.
Lemma 3. The absolute values of roots of the equation



