# 25. Period Four and Real Quadratic Fields of Class Number One 

By R. A. Mollin*) and H. C. Williams**)

(Communicated by Shokichi Iyanaga, m. J. A., April 12, 1989)

The purpose of this note is to provide criteria, in terms of primeproducing quadratic polynomials, for a real quadratic field $\boldsymbol{Q}(\sqrt{d})$ to have class number $h(d)=1$, when the continued fraction expansion of $\omega$ is $4($ where $\omega=(1+\sqrt{d}) / 2$ if $d \equiv 1(\bmod 4)$ and $\omega=\sqrt{d}$ if $d \equiv 2,3(\bmod 4))$. This continues the work of the first author in [4]-[11] and that of both authors in [12]-[18] in the quest for a general "Rabinowitsch-like" result for real quadratic field. Rabinowitch [19]-[20], proved that if $p \equiv 3(\bmod 4)$ is prime then $h(-p)=1$ if and only if $x^{2}-x+(p+1) / 4$ is prime for all integers $x$ with $1 \leq x \leq(p-7) / 4, p>7$. In [4] the first author found such a criterion for real quadratic fields of narrow Richaud-Degert (R-D)-type (see [1] and [21]). $\boldsymbol{Q}(\sqrt{d})$ (or simply $d$ ) is said to be R-D type if $d=l^{2}+r$ with $4 l \equiv 0(\bmod r)$ and $-l<r \leq l$. If $|r| \in\{1,4\}$ then $d$ is said to be of narrow R-D type. In [15]-[16] we found similar criteria for general R-D types. In fact in [18] we completed the task of actually determining all real quadratic fields of R-D type having class number one (with possibly only one more value remaining). However, our forging of intimate links between the class number one problem and prime-producing quadratic polynomials makes the existence of the potential additional value virtually impossible.

With the virtual solution of the class number one problem for real quadratic fields of R-D type the authors turned their attention to the general case. In [12] we found a Rabinowitsch criterion for $d \equiv 1(\bmod 4)$ where $\omega$ has period 3. Several examples of non-R-D types were provided as applications. The result in this paper is to find such a criterion when $\omega$ has period 4. Moreover for $d \equiv 5(\bmod 8)$ we determine all such $d$ with class number one (with possibly only one more value remaining).

Theorem 1. Let square-free $d \equiv 1(\bmod 4)$ and $\omega=\langle a, \overline{b, c, b, 2 a-1}\rangle$ (the continued fraction expansion of period 4$), d=(2 a-1)^{2}+4(c(f b-c)$ $+f)$, and $2 a-1=b^{2} c f-b c^{2}+c-2 b f$ for some positive integers $a, b, c$ and $f$. Let, furthermore, $f_{d}(x)=-x^{2}-x+(d-1) / 4$. Then $h(d)=1$ if and only if the following conditions (1)-(6) all hold.
(1) $b(f b-c)+1$ is prime.

[^0]
[^0]:    *) Mathematics Department, University of Calgary, Calgary, Alberta, Canada, T2N 1N4.
    **) Computer Science Department, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2.

