24. Notes on Certain Analytic Functions

By Mamoru NUNOKAWA*) and Shigeyoshi OWA**)

(Communicated by Kôsaku Yosida, M. J. A., March 13, 1989)

1. Introduction. Let $\mathcal{A}(n)$ denote the class of functions of the form

(1.1)
$$f(z) = z + \sum_{k=n+1} a_k z^k \qquad (n \in \mathcal{N} = \{1, 2, 3, \cdots\})$$
which are analytic in the unit disk $\mathcal{U} = \{z : |z| < 1\}.$

A function f(z) belonging to the class $\mathcal{A}(1)$ is said to be starlike with respect to the origin if it satisfies

(1.2)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0 \qquad (z \in \mathcal{U})$$

which is equivalent to

(1.3)
$$\left| \arg\left(\frac{zf'(z)}{f(z)}\right) \right| < \frac{\pi}{2} \qquad (z \in U).$$

Let $\mathcal{I}^*(\alpha)$ be the subclass of $\mathcal{A}(1)$ consisting of functions which satisfy

(1.4)
$$\left| \arg\left(\frac{zf'(z)}{f(z)}\right) \right| < \frac{\pi}{2} \alpha$$

for some α $(0 \le \alpha \le 1)$ and for all $z \in \mathcal{U}$. Clearly, a function f(z) belonging to the class $\mathcal{I}^*(\alpha)$ is starlike with respect to the origin in the unit disk \mathcal{U} .

Further, a function f(z) in the class $\mathcal{A}(1)$ is said to be convex of order α if it satisfies

(1.5)
$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha$$

for some α ($0 \leq \alpha < 1$) and for all $z \in \mathcal{U}$. We denote by $\mathcal{K}(\alpha)$ the subclass of $\mathcal{A}(1)$ consisting of all such functions.

2. Some properties. We begin with the statement of the following lemma due to Miller and Mocanu [1].

Lemma 1. Let $f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots$ $(n \in \mathcal{N})$ be analytic in $\mathcal{C}U$ with $f(z) \not\equiv a$. If $z_0 = r_0 e^{i\theta_0}$ $(0 < r_0 < 1)$ and

$$|f(z_0)| = \max_{|z| \le r_0} |f(z)|$$

then

(2.1)
$$\frac{z_0 f'(z_0)}{f(z_0)} = m$$

and

where $m \geq 1$ and

^{*)} Department of Mathematics, Gunma University.

^{**)} Department of Mathematics, Kinki University.