3. Sums of a Certain Class of q-series

By H. M. Srivastava ${ }^{\text {t) }}$
Department of Mathematics, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1989)
M. Vowe and H.-J. Seiffert [6] evaluated the sum :

$$
\begin{array}{r}
\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k} \frac{1}{2^{k}(n+k+1)}=\frac{2^{n}(n-1)!n!}{(2 n)!}-\frac{2^{-n}}{n} \tag{1}\\
(n \in N=\{1,2,3, \cdots\})
\end{array}
$$

by identifying it with an Eulerian integral. Subsequently, in our attempt in [4] to find the sum (1), without considering this Eulerian integral, we were led naturally to numerous interesting generalizations of (1) obtainable as useful consequences of Kummer's summation theorem [3, p. 134, Theorem 3] in the theory of the familiar (Gaussian) hypergeometric series (see [4] for details). The object of the present note is to derive certain basic (or q-) extensions of (1) and of its various generalizations given already by us [4].

For real or complex $q,|q|<1$, let

$$
\begin{equation*}
(\lambda ; q)_{0}=1 ;(\lambda ; q)_{k}=(1-\lambda)(1-\lambda q) \cdots\left(1-\lambda q^{k-1}\right), \forall k \in N, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
(\lambda ; q)_{\infty}=\lim _{k \rightarrow \infty}(\lambda ; q)_{k}=\prod_{j=0}^{\infty}\left(1-\lambda q^{j}\right) \tag{3}
\end{equation*}
$$

for an arbitrary (real or complex) parameter λ. Then a q-extension of Kummer's summation theorem [3, p. 134, Theorem 3], employed in our earlier work [4], can be written in the form (cf. [1, p. 526, Equation (1.9)]) :

$$
\begin{equation*}
\sum_{k=0}^{\infty} q^{k(k-1) / 2} \frac{(a ; q)_{k}(q / a ; q)_{k}}{(c ; q)_{k}} \frac{c^{k}}{\left(q^{2} ; q^{2}\right)_{k}}=\frac{\left(c a ; q^{2}\right)_{\infty}\left(c q / a ; q^{2}\right)_{\infty}}{(c ; q)_{\infty}}, \tag{4}
\end{equation*}
$$

or, equivalently,

$$
{ }_{2} \Phi_{2}\left[\begin{array}{l}
a, q / a ; \tag{5}\\
c,-q ;
\end{array} q=-c\right]=\frac{\left(c a ; q^{2}\right)_{\infty}\left(c q / a ; q^{2}\right)_{\infty}}{(c ; q)_{\infty}}
$$

in terms of a basic (or q-) hypergeometric ${ }_{r} \Phi_{s}$ function (cf., e.g., [5, p. 347, Equation (272)]).

Defining the basic (or $q-$) binomial coefficient by

$$
\left[\begin{array}{c}
\lambda \tag{6}\\
0
\end{array}\right]=1 ; \quad\left[\begin{array}{c}
\lambda \\
k
\end{array}\right]=(-1)^{k} q^{k(2 \lambda-k+1) / 2} \frac{\left(q^{-\lambda} ; q\right)_{k}}{(q ; q)_{k}}, \quad k \in N
$$

it is easily verified that

$$
\left[\begin{array}{c}
\lambda+k-1 \tag{7}\\
k
\end{array}\right]=\frac{\left(q^{2} ; q\right)_{k}}{(q ; q)_{k}} \quad\left(k \in N_{0}=N \cup\{0\}\right)
$$

and that

[^0]
[^0]: †) This work was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant A-7353.

