21. Asymptotic Behavior of the Solution for an Elliptic Boundary Value Problem with Exponential Nonlinearity

By Takashi SUZUKI^{*)} and Ken'ichi NAGASAKI^{**)}

(Communicated by Kôsaku Yosida, M. J. A., March 13, 1989)

§1. Introduction and results. We consider the elliptic eigenvalue problem

(1.1) $-\Delta u = \lambda e^u (\text{in } \Omega), \quad u = 0 (\text{on } \partial \Omega)$

for $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ and $\lambda \in \mathbf{R}_+ \equiv (0, +\infty)$, where $\Omega \subset \mathbf{R}^2$ is a bounded domain with smooth boundary $\partial \Omega$. We say that $\kappa \in \Omega$ is a core of Ω if it is a critical point of k(x) = K(x, x), where $K(x, y) = G(x, y) + (1/2\pi) \log |x-y|$, G = G(x, y) being the Green function: $-\Delta G = \delta(x-y)$, $G|_{x \in \partial \Omega} = 0$. When Ω is simply-connected, cores are finite. Furthermore, a core is unique if Ω is convex. For these facts, see Friedman [3] for example. On the other hand, for each core $\kappa \in \Omega$ satisfying a generic constrain, a branch S^* of the solutions $\{(u, \lambda)\}$ for (1.1) is constructed by the method of singular perturbation such a way that u makes one-point blow-up at κ as $\lambda \downarrow 0$. This fact has been established by Weston [9], Mosley [6] and Wente [8].

In the present note we show that conversely each family of solutions makes finite-point blow-up for star-shaped Ω as $\lambda \downarrow 0$, unless it approaches to the trivial solution u=0 of (1.1) for $\lambda=0$. More precisely,

Theorem. If Ω is simply connected and the family of solutions $\{u\}$ of (1.1) accumulates as $\lambda \downarrow 0$ to $v = 8\pi E_{\epsilon}(x)$ in $W^{1,p}(\Omega)$ $(1 and in <math>C(\overline{\Omega} \setminus \{\kappa\})$, then $\kappa \in \Omega$ is a core and the function $E_{\epsilon} = E_{\epsilon}(x)$ solves $-\Delta E_{\epsilon} = \delta(\kappa)$ and $E_{\epsilon}|_{2Q} = 0$.

Spruck [7] has studied a similar property for Sinh-Gordon equation in the rectangular domain $R \subset \mathbb{R}^2$. We are much inspired by his work, but the finiteness of a blow-up point does not follow from his argument for general domains. Our result extends to other semilinear eigenvalue problem in two-dimensional domains with exponentially-dominated nonlinearities, and details will be published elsewhere.

§2. Outline of Proof. The proof is divided into three parts:

Claim 1. When Ω is star-shaped, then $\Sigma \equiv \lambda \int_{\Omega} e^{u} dx$ is bounded as $\lambda \downarrow 0$.

Claim 2. If $\{\Sigma\}$ is bounded, then $\{u\}$ accumulates to a $v \in W^{1,p}(\Omega) \cap C^{\infty}(\overline{\Omega} \setminus \{\kappa_1, \dots, \kappa_l\})$ for some finite points $\kappa_1, \dots, \kappa_l \in \Omega$.

Claim 3. If $\{\kappa_1, \dots, \kappa_l\} = \{\kappa\}$, we have $\Sigma \to 8\pi$ and $v = 8\pi E_{\kappa}$ with some

^{*)} Department of Mathematics, Faculty of Science, Tokyo Metropolitan University.

^{**&#}x27; Department of Mathematics, Chiba Institute of Technology.