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1. Introduction. An operator equation, the so called Ljapunov
equation, often appears in stabilization studies of linear parabolic systems.
The equation is written as XL--BX--C, where the operators L, B, and C
are given linear operators acting in separable Hilbert spaces, and are
derived rom a specific boundary eedback control system [6, 7, 8]. A gen-
eral stabilization scheme for an unstable parabolic equation has been es-
tablished in [6]. The parabolic equation containing L as a coefficient
operator is often affected by small perturbations which may be sometimes
interpreted as errors in mathematical ormulation of a physical system.
In such a case, does the eedback scheme still work or stabilization of the
perturbed equation? A study of continuity of a solution X relative to L
is undamental to answer the question. It is the purpose of the paper to
examine the continuity of X. We will see in 2 below an affirmative re-
sult on this problem.

Let us specify the operators L, B, and C. _L will denote a strongly
elliptic differential operator of order 2 in a connected bounded domain tO
of with a finite number of smooth boundaries F of (m-1)-dimension

,= x x = x + c(x)u,

where a(x)=a(x), 1_i, ]_m, and or some positive

a(x)>_ll, =(, ..., ), x e 9.
i,j =1

Associated with _L is a generalized Neumann boundary operator ;
u= U +()u,

where 3/,=,=a(),()/x, and (,,(),...,,()) indicates the out-
ward normal at e F. Then, L is defined in L(9) by

Lu=_u, u e (L)={u e H(t) u=0 on F}.
All norms hereafter will be either L(tg)- or (L(9))-norm unless other-
wise indicated. As is well known [2], the spectrum a(L) lies in the interior
of a parabola {=a+ir; a=a:--b, e }, a>O. Second, the general struc-
ture of the operator B is specified in the following lemma"

Lemma 1.1 [6]. Let A be a positive-definite self-ad]oint operator in a
separable Hilbert space Ho with a compact resolvent. Let {/, i_1,
l_]_n ( c)} denote the eigenpairs of A (/ are labelled according to in-
creasing order, and normalized). Define H and B as


