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We use quantum R matrices [3] to define quantum orthogonal and
symplectic groups in the same way as quantum GL and SL of type A [2, 4,
7]. We also consider embedding the quantum orthogonal and symplectic
groups Oq(n) and Spq(n) into sme q-analogues of GL(n). It seems difficult
to embed into GLq(n) of type A. We suggest there are two other types
(orthogonal and symplectic) of q-analogues of GL(n), and explain the em-
bedding of Oq(3) into GL(3), the quanum GL(3) of orthogonal type, in
detail.

We work over a field k, and fix an element q=/=0 in k. Let be the
free associative k-algebra on indeterminates x, i, ]=1, ..., n, with the
following bialgebra structure:

A(x) x(R)x, (x)=.
Let X denote the n n matrix (x) with entries in

1. Quantum orthogonal groups. For lin, put i’--n+ 1--i and

{io__(n/2)= if i=i’,
(n/2)- 1 if i)i’.

We assume q has a squre root q/ in k when n is odd. Let T denote the
following symmetric nn matrix.

q e.(R)e.+ eq(R)e+(q--q-9 ez(R)e.+ ae(R)e,,
iei’ ij,j’ ij,ij’ i’

where eq denote matrix units and

lq_q if i=i’ k,
i i:/:i’ k,at

(_q-1)(/._q--) if i’k.
We have

(T- q)(T+ q-1)(T-- ql-) --0.
Definition 1. Define bialgebras Mq(n) and Aq(n) by
Mq(n)=in/(X()T= TX()), Aq(n)--Mq(n)/(XX’=I=X’X),

where X()=(X(R)I)(I(R)X), and X’=(qJ-x,,)..
Proposition 2. (a) Aq(n) is a Hopf algebra, i.e., has an antipode.
(b) If q+l, there is a central group-like element in Mq(n) such

that XX’=yI=X’X. The localization M(n)[y-x] (with - group-like) is a
Hopf algebra, and A(n) coincides with the quotient Hopf algebra

Mq(n) / ff --1).


