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1. Introduction. We use here standard notations in Nevanlinna
theory [3], [5].

Let f(z) be a meromorphic function. As usual, m(r, f), N(r, /), and
T(r, f) denote the proximity function, the counting function, and the char-
acteristic function of f(z), respectively. Let N(», f) be the counting func-
tion for distinct poles of f(z).

A function ¢(r), 0<r<<oco, is said to be S(r, f) if there is a set ECR*
of finite linear measure such that o(r)=0(T(r, f)) as r—oo, r ¢ E. A mero-
morphic function a(z) is said to be small with respect to f(z) if T(r,a)=

S(r, ). Let a,2), j=1, ---,n, be meromorphic functions. A function
w(2) is admissible with respect to a,(2), if T(r, a)=Sr, w), =1, -- -, n.
For a differential monomial M[w]=a(z)w(w)" ... (w™)* in w, we

put 7y=n+n+ - +n, and I'y=pn+(@p+Dn,+ - - - +(@p+mn,, and call
degree and weight-p of M{w], respectively. We write I'}, simply as I',.
Let Q2(2) be a differential polynomial with meromorphic coefficients:
Q[w]=§Mz[w]=§I a,(Rw(w)™ - - (W),

where a,(2) are meromorphic functions, I is a finite set of multi-indices 1=
(g, My - -+, my). We define degree 7, and weight-p 't of Q by 7o=max,c; 7y,
and ['j=max,., [y, respectively.

A meromorphic solution w(z) of the differential equation Q[w]=0 is
admissible solution, if w(z) is admissible w.r.t. a,(2), 1¢I.

2[w] is said to satisfy the condition (GL) if, for any p>1,
(GL) there is an indew i, such that 'y, > Iy, if i1,

This condition (GL) is due to Gackstatter-Laine [2], who investigated the
equation

1.1) w:io a,w  (0<m<2n),
and conjectured that it Woéld not admit any admissible solution if 1<m<
n—1. In this respect, Toda [7] proved the following theorem.

Theorem A. The differential equation (1.1) does not possess any
admissible solutions if 1<m<n—1, except for the case when n—m is a
divisor of n and (1.1) is of the following form:

W =a,, @)W+ o)™, where a is a constant.

Recently, Toda [8] studied more general differential equation



