11. A Certain Functional Derivative Equation Corresponding to $\Box u + cu + bu^2 + au^3 = g$ on \mathbb{R}^{d+1}

By Atsushi INOUE

Department of Mathematics, Tokyo Institute of Technology

(Communicated by Kôsaku Yosida, M. J. A., Feb. 13, 1989)

Introduction and results. $L_r^p (1 \le p \le \infty, r \in \mathbb{R})$ denotes the space of weighted *p*-summable functions on \mathbb{R}^d with norm given by $|u|_{p,r} = \left(\int_{\mathbb{R}^d} (1+|x|^2)^{rp/2} |u(x)|^p dx\right)^{1/p}$ or $|u|_{\infty,r} = \operatorname{ess.sup}_{x \in \mathbb{R}^d} (1+|x|^2)^{r/2} |u(x)|$. When r=0, we put $L^p = L_0^p$ with $|u|_p = |u|_{p,0}$. For $s \in \mathbb{N}$, $||u||_{s,r} = \left(\int_{\mathbb{R}^d} (1+|x|^2)^r \sum_{|\alpha|\le s} |D^{\alpha}u(x)|^2 dx\right)^{1/2}$ represents the norm of H_r^s , the weighted Sobolev space of order *s* on \mathbb{R}^d . For general $s \in \mathbb{R}$, H_r^s is defined by using the interpolation theory and H^s stands for H_0^s with $||u||_s = ||u||_{s,0}$. The dual space of L_r^p is L_{-r}^q for $1 \le p < \infty$ with 1/p+1/q=1. $H_{-r}^{-s} = (\dot{H}_r^s)^*$ for $s \ge 0$ with $\dot{H}_r^s = \dot{H}_r^s(\mathbb{R}^d)$ $(s \ge 0)$ being the closure of $C_0^\infty(\mathbb{R}^d)$ in H_r^s .

Now, we put $X = {}^{\iota}(V \times L^2)$ and $X^* = V^* \times L^2$ with norms $||U||_{X} = ||u||_{V} + |v|_{2}$ and $||\mathcal{Z}||_{X^*} = ||\xi||_{V^*} + |\eta|_{2}$ for $U = {}^{\iota}(u, v)$ and $\mathcal{Z} = (\xi, \eta)$. Here, $V = H^1 \cap L^4$ and $V^* = H^{-1} + L^{4/3}$ with norms $||u||_{V} = ||u||_{1} + |u|_{4}$ and $||\xi||_{V^*} = \inf_{\xi = \xi_1 + \xi_2} (||\xi_1||_{-1} + |\xi_2|_{4/3})$.

Our aim of this paper is to solve the following problems: Let $0 < T_0 \le \infty$.

(I) Find a functional
$$W(t, \Xi)$$
 on $t \in (0, T_0) \times X^*$ satisfying
(I.1) $\frac{\partial}{\partial t}W(t, \Xi) = \int_{\mathbb{R}^d} \left[\eta(x) \left((\Delta - c) \frac{\delta W(t, \Xi)}{\delta \xi(x)} + ib \frac{\delta^2 W(t, \Xi)}{\delta \xi(x)^2} + a \frac{\delta^3 W(t, \Xi)}{\delta \xi(x)^3} \right) + \xi(x) \frac{\delta W(t, \Xi)}{\delta \eta(x)} + i\eta(x)g(x, t)W(t, \Xi) \right] dx,$
(I.2) $W(t, 0) = 1, \quad W(0, \Xi) = W_0(\Xi).$

Here given data are $W_0(\Xi)$ and g(x, t).

(II) Find a family of Borel measures
$$\{\mu(t, dU)\}_{0 < t < T_0}$$
 on X satisfying
(II) $\int_0^{T_0} \int_X \frac{\partial \Phi(t, U)}{\partial t} \mu(t, dU) dt + \int_X \Phi(0, U) \mu_0(dU)$
 $= -\int_0^{T_0} \int_X \int_{R^d} \left[(\Delta u(x) - f(u(x)) + g(x, t)) \frac{\partial \Phi(t, U)}{\partial v(x)} + v(x) \frac{\partial \Phi(t, U)}{\partial u(x)} \right]$
 $\times dx \mu(t, dU) dt$

for suitable 'test functionals' $\Phi(t, U)$ with given data $\mu_0(dU)$ and g(x, t).

For the notational simplicity, we put here $f(u) = au^3 + bu^2 + cu$, $F(u) = au^4/4 + bu^3/3 + cu^2/2$ and

$$H(U) = H(u, v) = \int_{\mathbb{R}^d} \{ |v(x)|^2 / 2 + |\nabla u(x)|^2 / 2 + F(u(x)) \} dx.$$