96. Orbi-maps and 3-orbifolds

By Yoshihiro TAKEUCHI
Department of Mathematics, Aichi University of Education
(Communicated by Kunihiko Kodaira, M. J. A., Dec. 12, 1989)

1. Definitions. An *n*-orbifold is a topological space locally homeomorphic to (an open set in \mathbb{R}^n)/(a finite group action) and each point of it is provided with an isotropy data. By the symbol |X|, we shall mean the underlying space of the orbifold X.

For studying orbifolds, we need a map between orbifolds which respects their orbifold structures. An orbifold X is good if |X| is homeomorphic to (a manifold \tilde{X})/(a properly discontinuous action). In this paper, orbifolds which we deal with are good orbifolds. All orbifolds will be assumed to be good unless otherwise specified. If \tilde{X} is simply connected, the quotient map $p: |\tilde{X}| \rightarrow |X|$ is called the *universal orbi-covering*.

Let X and Y be orbifolds. Let $p: |\tilde{X}| \rightarrow |X|$ and $q: |\tilde{Y}| \rightarrow |Y|$ be the universal orbi-coverings. We introduce an orbi-map between X and Y as follows; By an $orbi-map\ f: X \rightarrow Y$, we shall mean a continuous map $h: |X| \rightarrow |Y|$ with a fixed continuous map $\tilde{h}: \tilde{X} \rightarrow \tilde{Y}$ which satisfies the following conditions:

- $(01) h \circ p = q \circ \tilde{h}.$
- (02) For each $\sigma \in \operatorname{Aut}(\tilde{X}, p)$, there exists a $\tau \in \operatorname{Aut}(\tilde{Y}, q)$ such that $\tilde{h} \circ \sigma = \tau \circ \tilde{h}$.
- (03) There exists a point $\tilde{x} \in \tilde{X} p^{-1}(\Sigma X)$ such that $\tilde{h}(\tilde{x}) \in \tilde{Y} q^{-1}(\Sigma Y)$.
 - 2. Constructions and modifications of orbi-maps.
- **2.1.** Theorem. Let M be a compact 2- or 3-orbifold and N an orientable 3-orbifold such that the total space of the universal orbi-covering of $\operatorname{Int}(N)$ is homeomorphic to \mathbb{R}^3 . Suppose $\varphi: \pi_1(M) \to \pi_1(N)$ is a homomorphism such that for any local group G_x of M, $\varphi(G_x) \not\cong A_5$. Then, there exists an orbi-map $f: M \to N$ such that $f_* = \varphi$.
- 2.2. Theorem (Transversal modification of dimension 3). Suppose M and N are compact 3-orbifolds such that N is containing a properly embedded, 2-sided, 2-suborbifold F such that $\operatorname{Ker}(\pi_1(F) \to \pi_1(N)) = 1$, $\pi_2(F) = 0$, and the total space of the universal orbi-covering of $\operatorname{Int}(N-F)$ is homeomorphic to \mathbb{R}^3 . Suppose $f: M \to N$ is any orbi-map such that for any local group G, $f_*(G) \not\cong A_5$. Then there exists an orbi-map $g: M \to N$ such that
 - (1) g is C-equivalent to f,
- (2) each component of $g^{-1}(F)$ is a properly embedded, 2-sided, incompressible 2-suborbifold in M, and
- (3) for properly choosen product neighborhoods $F \times [-1, 1]$ of $F = F \times 0$ in N and $g^{-1}(F) \times [-1, 1]$ of $g^{-1}(F) = g^{-1}(F) \times 0$ in M, g maps each fiber $x \times 1$