94. On the Automorphism Groups of Edge-coloured Digraphs

By Mitsuo Yoshizawa
Department of Mathematics, Josai University
(Communicated by Shokichi Iyanaga, m. J. A., Dec. 12, 1989)

1. Introduction. For any finite group $G = \{g_1, g_2, \cdots, g_q\}$, we construct an edge-coloured strongly connected digraph $\Delta = \Delta(G)$ with the vertexset $V\Delta = \{g_1, g_2, \cdots, g_q\}$ such that for any two vertices u and v of Δ both (u, v) and (v, u) are directed edges of Δ and they are coloured with colours $u^{-1}v$ and $v^{-1}u$ respectively. Then the (colour-preserving) automorphism group $\operatorname{Aut}\Delta$ of Δ on $V\Delta$ is isomorphic to the regular representation [4] of G as a permutation group ([5, p. 96, Lemma 3.1]). On the other hand, Frucht [1] and Sabidussi [2] proved the following: For any finite group G and any integer $k\geq 3$ there exist infinitely many connected k-regular (undirected) graphs Γ in which $V\Gamma$ has a disjoint union decomposition $V\Gamma = \sum_{i=1}^q V_i$ (q = |G|) such that the automorphism group $\operatorname{Aut}\Gamma$ of Γ acts faithfully on the set $\{V_1, V_2, \cdots, V_q\}$ by the natural action and the permutation group derived by its action is isomorphic to the regular representation of G as a permutation group.

In this peper we shall extend the above. Let Δ be an edge-coloured digraph and C be the set of colours c with which at least one directed edge of Δ is coloured. We define a uniquely definite positive integer $\lambda(\Delta)$ as follows. For any vertex x of Δ and c in C let $\lambda_{\text{in}}(x;c)$ denote the number of directed edges with colour c having x as head and $\lambda_{\text{out}}(x;c)$ denote the number of directed edges with colour c having x as tail. We define $\lambda_{\text{max}}(\Delta) = \max{\{\lambda_{\text{in}}(x;c), \lambda_{\text{out}}(x;c): x \in V\Delta, c \in C\}}$ and $\lambda(\Delta) = \max{\{\lambda_{\text{max}}(\Delta)+1, 3\}}$. The purpose of this paper is to prove

Theorem. Let Δ be an edge-coloured weakly connected digraph with $|V\Delta|=n$. Then for any integer $k \geq \lambda(\Delta)$ there exist infinitely many connected k-regular (undirected) graphs Γ in which $V\Gamma$ has a disjoint union $V\Gamma = \sum_{i=1}^n V_i$ such that $\operatorname{Aut}\Gamma$ acts faithfully on the set $\{V_1, V_2, \dots, V_n\}$ by the natural action and the permutation group derived by its action is isomorphic to the (colour-preserving) automorphism group $\operatorname{Aut}\Delta$ of Δ on $V\Delta$ as a permutation group.

2. Preliminaries. Unless stated otherwise, all graphs are finite, undirected, simple and loopless. If an edge e joins two vertices u and v, we write e = [u, v] = [v, u]. If Aut $\Gamma = 1$, Γ is called asymmetric.

Now we introduce a notion of the type [1] (a_1, a_2, \dots, a_r) (r = m(m-1)/2) of a vertex v of valency m in a graph Γ . Let u_1, u_2, \dots, u_m be the adjacent vertices of v. We define the number α_{ij} (i < j) as follows:

 α_{ij} = the minimum length of circuits which contain the two edges $[u_i, v]$