84. Regular Elements of Abstract Affine Near-rings

By Iwao Yakabe
Department of Mathematics, College of General Education, Kyushu University
(Communicated by Shokichi Ifanaga, m. J. A., Oct. 12, 1989)

1. Introduction. In his paper [2], Steinfeld characterizes the regular elements of a ring in terms of quasi-ideals.

The purpose of this note is to extend the above result to a class of abstract affine near-rings. An example is given to show that the result does not hold for arbitrary near-rings.

For the basic terminology and notation we refer to [1].
2. Preliminaries. Let N be a near-ring, which always means right one throughout this note.

If A, B and C are three non-empty subsets of N, then $A B(A B C)$ denotes the set of all finite sums of the form $\sum a_{k} b_{k}$ with $a_{k} \in A, b_{k} \in B\left(\sum a_{k} b_{k} c_{k}\right.$ with $a_{k} \in A, b_{k} \in B, c_{k} \in C$), and $A * B$ denotes the set of all finite sums of the form $\sum\left(a_{k}\left(a_{k}^{\prime}+b_{k}\right)-a_{k} a_{k}^{\prime}\right)$ with $a_{k}, a_{k}^{\prime} \in A, b_{k} \in B$. Note that $A B C=(A B) C \subseteq A(B C)$ in general, and that $A B C=(A B) C=A(B C)$ if $A \subseteq N_{d}$, where N_{d} is the set of all distributive elements of N.

A right N-subgroup (left N-subgroup) of N is a subgroup H of $(N,+)$ such that $H N \subseteq H(N H \subseteq H)$. A quasi-ideal of N is a subgroup Q of $(N,+)$ such that $Q N \cap N Q \cap N * Q \subseteq Q$. Right N-subgroups and left N-subgroups are quasi-ideals. The intersection of a family of quasi-ideals is again a quasi-ideal.

Lemma 1. Let e be an idempotent element of a near-ring N, and let R be a right N-subgroup of N. Then the following assertions hold:
(i) $\quad R(N e)=R e$.
(ii) Re is a quasi-ideal of N such that $R e=R \cap N e$.

Proof. (i) We have $R(N e)=R N e \subseteq R e$ and $R e=R e e \subseteq R N e=R(N e)$. So $R(N e)=R e$.
(ii) Since R and $N e$ are quasi-ideals of N, it suffices to prove the relation $R e=R \cap N e . \quad$ As $R e \subseteq R \cap N e$, we have to show only $R \cap N e \subseteq R e$. Any element x of $R \cap N e$ has the form $x=r=n e$ with $r \in R, n \in N$, whence $x=n e$ $=n e e=r e \in R e$.

For an element n of a near-ring $N,(n)_{r}\left((n)_{l}\right)$ denotes the right (left) N subgroup of N generated by n, and $[n]$ denotes the subgroup of $(N,+)$ generated by n.

An element n of a near-ring N is called regular if $n=n x n$ for some element x of N.

