83. A Note on the Artin Map

By Takashi Ono

Department of Mathematics, The Johns Hopkins University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1989)

Let K/k be a finite Galois extension of algebraic number field with the Galois group G = G(K/k), \mathfrak{p} a prime ideal of k unramified for K/k and \mathfrak{P} be a prime factor of \mathfrak{p} in K. Denote by $\left[\frac{K/k}{\mathfrak{P}}\right]$ the Frobenius automorphism of \mathfrak{P} . For an element $\sigma \in G$, denote by $C(\sigma)$ the conjugate class containing σ , by $h(\sigma)$ the cardinality of $C(\sigma)$ and by $a(\sigma)$ the following element in the center $C[G]_0$ of the group ring C[G]:

(1)
$$a(\sigma) = \frac{1}{h(\sigma)} \sum_{\tau \in C(\sigma)} \tau.$$

For $\sigma = \left[\frac{K/k}{\Re}\right]$, we may write, without ambiguity, C_{ν} , h_{ν} , a_{ν} , instead of $C(\sigma)$, $h(\sigma)$, $a(\sigma)$, respectively. One verifies easily that

(2)
$$a_{\mathfrak{p}} = \frac{1}{g_{\mathfrak{p}}} \sum_{\mathfrak{P} \mid \mathfrak{p}} \left[\frac{K/k}{\mathfrak{P}} \right] = \frac{1}{n} \sum_{\sigma \in G} \left[\frac{K/k}{\mathfrak{P}^{\sigma}} \right], \qquad n = [K:k],$$

where $g_{\mathfrak{p}}$ means the number of distinct prime factors of \mathfrak{p} in K. We shall denote by $\alpha_{K/k}(\mathfrak{p})$ the element in $C[G]_0$ defined by any member of the equalities (2). When K/k is abelian, $\alpha_{K/k}(\mathfrak{p})$ is an element of G and we have

(3)
$$\alpha_{K/k}(\mathfrak{p}) = \left(\frac{K/k}{\mathfrak{p}}\right)$$
 (Artin symbol).

Back to any Galois extension K/k, put

(4) $I(K/k) = \{ \mathfrak{a}; \text{ ideal } (\neq 0) \text{ in } \mathfrak{o}_k, (\mathfrak{a}, \mathcal{A}_{K/k}) = 1 \},$

where o_k is the ring of integers of k and $\Delta_{K/k}$ denotes the relative discriminant of K/k. If

$$(5) \qquad \qquad \mathfrak{a} = \prod \mathfrak{p}^{\mathfrak{v}_{\mathfrak{p}}(\mathfrak{a})}, \qquad \mathfrak{a} \in I(K/k),$$

is the factorization of a in k, we put

(6)
$$\alpha_{K/k}(\mathfrak{a}) = \prod_{\nu} \alpha_{K/k}(\mathfrak{p})^{\nu_{\mathfrak{p}}(\mathfrak{a})}.$$

The map $\alpha_{K/k}$ whose domain of definition is now I(K/k) is, as is easily seen, a homomorphism of the multiplicative semigroup I(K/k) into the multiplicative semigroup of the commutative ring $C[G]_0$ sending the identity o_k to the identity 1_G . When K/k is abelian, the image of $\alpha_{K/k}$ is just the group G (by the density theorem due to Tschebotareff) and the determination of fibres of $\alpha_{K/k}$ is the content of the Artin reciprocity in class field theory. Therefore it is natural to study the image and fibres of the map $\alpha_{K/k} : I(K/k) \rightarrow C[G]_0$ for nonabelian Galois extension K/k. Since the cardinality of the image of $\alpha_{K/k}$ is the order of G when K/k is abelian, let us start our study of $\alpha_{K/k}$ with a criterion for the finiteness of the image. To do this, we need some