80. Properties of Certain Integral Operator

By Shigeyoshi OWA*) and Ke HU**)

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1989)

1. Introduction. Let \mathcal{A}_n denote the class of functions of the form

(1.1)
$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \qquad (n \in \mathcal{N} = \{1, 2, 3, \dots\})$$

which are analytic in the unit disk $U = \{z : |z| < 1\}$.

A function f(z) in the class \mathcal{A}_n is said to be a member of the class $\mathcal{A}_n(\alpha)$ if it satisfies

(1.2)
$$\left|\frac{f(z)}{z}-1\right| < 1-\alpha \quad (z \in \mathcal{U})$$

for some α ($0 \leq \alpha < 1$).

Let the functions f(z) and g(z) be analytic in the unit disk U. Then the function f(z) is said to be subordinate to g(z) if there exists a function w(z) analytic in U, with w(0)=0 and |w(z)|<1 ($z \in U$), such that

(1.3) $f(z) = g(w(z)) \qquad (z \in {}^{C}U).$

We denote this subordination by

(1.4) f(z) < g(z). In particular, if g(z) is univalent in \mathcal{U} , then the subordination (1.4) is equivalent to f(0) = g(0) and $f(\mathcal{U}) \subset g(\mathcal{U})$ (cf. [2]).

This concept of subordination can be traced to Lindelöf [5], but Littlewood ([6], [7]) and Rogosinski ([10], [11]) introduced the term and discovered the basic properties.

For a function f(z) belonging to the class \mathcal{A}_n , we define the generalized Libera integral operator J_c by

(1.5)
$$J_{c}(f(z)) = \frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) dt \qquad (c \ge 0).$$

The operator J_c , when $c \in \mathcal{N}$, was introduced by Bernardi [1]. In particular, the operator J_1 was studied earlier by Libera [4] and Livingston [8].

2. Properties of the operator J_c . In order to derive our results, we have to recall here the following lemma due to Miller and Mocanu [9] (also Jack [3]).

Lemma. Let the function (2.1) $w(z) = b_n z^n + b_{n+1} z^{n+1} + \cdots$ $(n \in \mathcal{I})$ be regular in the unit disk \mathcal{U} with $w(z) \not\equiv 0$ $(z \in \mathcal{U})$. If $z_0 = r_0 e^{i\theta_0}$ $(r_0 < 1)$ and (2.2) $|w(z_0)| = \max_{|z| \leq r_0} |w(z)|$, then

then

^{*)} Department of Mathematics, Kinki University, Higashi-Osaka, Osaka, Japan.

^{**)} Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi, China.