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Introduction. Let M be a real analytic manifold with a complexifica-
tion X. Let V be C-conic involutive submanifold of *X(--T*X\X),
and let be a coherent ’x-module with constant multiplicity along V.
Moreover let 9 be an open subset of M with real analytic boundary N=32.
The aim of this note is to give vanishing theorems for the cohomology
groups of the complex R Homx(Y2, C,x) where C,.r is the complex o
microunctions at the boundary introduced by P. Schapira [8] (see 1.1 for
the definition).

The vanishing of the complex R Homcx (3, C) has been studied by M.
Sato et al. [6], M. Kshiwara [3] and Kashiwara-Schapira [5], and we
study in this note an analogous problem at the boundary.

1. Preliminary and a lemma. 1.1. Let M be a real analytic mani-
fold o dimension n with a complexification X, and let 2 be an open subset
of M with real analytic boundary N---q.

The cotangent bundle T*X of X is endowed with the sheaf ’x of
microdifferential operators of finite order. Refer to M. Sato et al. [6] and
P. Schapira [7] for detailed account of . Let T*X denote the micro-
support of Z, due to [4], and let L,t be the complex of microfunctions along

T*X introduced by P. Schapira [8]. With the bifunctor ffhom(., .) con-
structed by Kashiwara-Schapira [4], the complex C,Ix is explicitly given by

Cl-ffhom (Z, 0)(R) or[n]
where or, denotes the orientation sheaf on M.

1.2. We follow the notation in 1.1. Let V be a (C)-conic involutive
submanifold of *X. We recall the Levi form 3(V)(p) of V along A=TX
at p e A ( V. Take a system of functions (f, ..., f) so that V={q e *X;
f(q) f(q)=0} locally in a neighborhood p. Then .(V)(p) denotes
the Hermitian form given by the matrix ({f, f})_<,,_<. Here f is the
complex conjugate of f and {., } is the Poisson bracket. We remark that
the signature of ATA(V)(p) is independent of the choice of (f,, ..., f). Refer
to M. Sato et al. [6] and Kashiwara-Schapira [5].

1.3. Let X be a C manifold. Then D(X) denotes the derived care-
gory o the category of bounded complexes of sheaves on X. For F e
Ob(D(X)), SS(F) is its micro-support. Let Z and Z be two subsets in X.
Then C(Z, Z) is the tangent cone for the pair (Z, Z). Refer to Kashiwara-
Schpira [4] for all in this 1.3.


