78. A Nonlinear Ergodic Theorem for Asymptotically Nonexpansive Mappings in Banach Spaces

By Hirokazu OKA

Department of Mathematics, Waseda University

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1989)

1. Introduction. Throughout this paper X denotes a uniformly convex real Banach space and C is a closed convex subset of X. The value of $x^* \in X^*$ at $x \in X$ will be denoted by (x, x^*) . The duality mapping J (multivalued) from X into X* will be defined by $J(x) = \{x^* \in X^* : (x, x^*) = ||x||^2 = ||x^*||^2\}$ for $x \in X$. We say that X is (F) if the norm of X is Fréchet differentiable, i.e., for each $x \in X$ with $x \neq 0$, $\lim_{t \to 0} t^{-1}(||x + ty|| - ||x||)$ exists uniformly in $y \in B_1$, where $B_r = \{z \in X : ||z|| \leq r\}$ for r > 0. A mapping $T : C \to C$ is said to be asymptotically nonexpansive if for each $n = 1, 2, \cdots$

(1.1) $||T^n x - T^n y|| \leq (1 + \alpha_n) ||x - y||$ for any $x, y \in C$, where $\lim_{n \to \infty} \alpha_n = 0$. In particular, if $\alpha_n = 0$ for all $n \geq 1$, T is said to be nonexpansive. The set of fixed points of T will be denoted by F(T).

Throughout the rest of this paper let $T: C \rightarrow C$ be an asymptotically nonexpansive mapping satisfying (1.1).

A sequence $\{x_n\}_{n\geq 0}$ in C is called an *almost-orbit* of T if

$$\lim_{n \to \infty} [\sup_{m \ge 0} ||x_{n+m} - T^m x_n||] = 0.$$

A sequence $\{z_n\}$ in X is said to be *weakly almost convergent* to $z \in X$ if

$$w - \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} z_{k+i} = z$$

uniformly in $i \ge 0$.

The purpose of this paper is to prove the following (nonlinear) mean ergodic theorem which is an extension of [3, Theorem 1] and [1, Corollary 2.1].

Theorem. Let $\{x_n\}_{n\geq 0}$ be an almost-orbit of T. If X is (F) and C is bounded, then $\{x_n\}$ is weakly almost convergent to the unique point of F(T) $\cap \operatorname{clco} \omega_w(\{x_n\})$, where $\omega_w(\{x_n\})$ denotes the set of weak subsequential limits of $\{x_n\}$, and cloo E is the closed convex hull of E.

2. Proof of Theorem. Throughout this section, we assume C is bounded. By Bruck's inequality [2, Theorem 2.1], we get

Lemma 1. There exists a strictly increasing, continuous, convex function $\tilde{\gamma}: [0, \infty) \rightarrow [0, \infty)$ with $\tilde{\gamma}(0) = 0$ such that

$$\begin{split} \left\| T^k \left(\sum_{i=1}^n \lambda_i x_i \right) - \sum_{i=1}^n \lambda_i T^k x_i \right\| \\ & \leq (1+\alpha_k) \gamma^{-1} \left(\max_{1 \leq i, j \leq n} \left[\|x_i - x_j\| - \frac{1}{1+\alpha_k} \|T^k x_i - T^k x_j\| \right] \right) \end{split}$$