9. Configuration of Divisors and Reflexive Sheaves

By Nobuo Sasakura
Tokyo Metropolitan University
(Communicated by Kunihiko Kodaira, M. J. A., Jan. 12, 1989)

0. Let X be a connected complex manifold of dimension $\geqq 2$ and X^{1} a reduced but reducible divisor of X. In this note, by using the Cech-stratification theoretical method in [7], we construct sheaves in the title from X^{1}. A main property of such sheaves is:
(*) They have X^{1} as their determinantal divisor (cf. § 1). We see that the two highly important bundles on the projective spaces, Horrocks-Mumford and null correlation bundles (cf. [4] and [6]) are constructed in the above manner. We also form some other interesting sheaves which seem to belong to new classes (cf. § 2). This note is a report of our recent works, cf. [8]. Details will appear elsewhere.
1. Construction. Set $X^{2}=\bigcup_{i \neq j}\left(X_{i}^{1} \cap X_{j}^{1}\right)$ and $\dot{X}=X-X^{2}$, where X_{i}^{1} runs through all irreducible components of X^{1}. Then our sheaf, denoted by \mathcal{E}, is obtained as the direct image $i_{*} \dot{\mathcal{E}}$ of a bundle $\dot{\mathcal{E}}$ over \dot{X}, with the injection $i: \dot{X} \hookrightarrow X$. In order to form $\dot{\mathcal{E}}$ we take (1) two open subsets N_{0}, N_{1} of \dot{X} satisfying $N_{0} \cup N_{1}=\dot{X}$ and (2) a non singular matrix $H \in \mathrm{GL}_{r}\left(\Gamma\left(N_{0} \cap\right.\right.$ $\left.N_{1}, \mathcal{O}\right)$), where $r=\operatorname{rank} \dot{\mathcal{E}}$ and $\mathcal{O}=$ structure sheaf of X. Then the bundle $\dot{\mathcal{E}}$ is the one determined by H. We choose N_{0}, N_{1} and H in such a manner that properties of X^{1} reflect closely to them. More precisely we impose the following condition on N_{0}, \cdots :
(1.1) $\quad N_{0}=X-X^{1}$ and $N_{1}=\Perp_{i \in\lrcorner_{m}} N_{1, i}$, where $N_{1, i}$ is an open neighborhood of $\dot{X}_{i}^{1}:=X_{i}^{1}-X^{2}$ in \dot{X}. (Here $\Delta_{m}=\{1, \cdots, m\}$ with $m=$ the number of the irreducible components of X^{1}.)
(1. 2) $H \in M_{r}\left(\Gamma\left(N_{1}, \mathcal{O}\right)\right)$ and $(\operatorname{det} H)_{0}=\dot{X}^{1}\left(:=\Perp_{i \in \Delta_{m}} \dot{X}_{i}^{1}\right)$.

We see immediately that there are frames e^{i} of $\mathcal{E}_{\mid N_{i}}, i=0,1$, satisfying $e^{0}=e^{1} H$ in $N_{0} \cap N_{1}$. This implies that $e^{0} \subset \Gamma(X, \mathcal{E})$ and that X^{1} is the determinantal divisor of \mathcal{E} : $\left(\operatorname{det} e^{0}\right)_{\mid \dot{X}}=\dot{X}^{1}$.
2. Examples. Here we assume that $\operatorname{dim} X \geqq 3$. Also we assume that (1) there is a line bundle \mathcal{L} over X and sections $s_{i} \in \Gamma(\mathcal{L})$ such that $X_{i}^{1}=$ $\left(s_{i}\right)_{0}$ and (2) for each $I=\left\{i_{1}, \cdots, i_{s}\right\}$ satisfying $X_{I}:=\bigcap_{i \in I} X_{i}^{1} \neq \phi, \operatorname{codim}_{X} X_{I}=s$ and X_{I} is smooth.
2.1. First we consider two types of matrices $H \in M_{2}\left(\Gamma\left(N_{1}, \mathcal{O}\right)\right)$ as follows. (In $(2.1,2)$ below, $i \in \Delta_{m}$.)

$$
H_{\mid N_{1, i}}=\left[\begin{array}{ll}
1 & t_{i} \otimes s_{i} / \prod_{j \in \lambda_{m}} s_{j} \tag{2.1}\\
0 & s_{i} / s_{i+1}
\end{array}\right]
$$

where t_{i} is an element
and

