73. Theta Series and the Poincaré Divisor

By Shoji Koizumi
Kogakuin University
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1989)

Let H_{n} be the Siegel upperhalf space of degree n, that is, $H_{n}=$ $\left\{\left.z \in M_{n}(C)\right|^{t} z=z, \mathscr{I}_{m} z>0\right\}$. Then the classical theta $\vartheta\left[\begin{array}{l}k^{\prime} \\ k^{\prime \prime}\end{array}\right](z \mid x)$ may be regarded as a function of $\left(z, k^{\prime}, k^{\prime \prime}, x\right)$ on $H_{n} \times \boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \times \boldsymbol{C}^{n}$. Now we introduce a complex variable $k=z k^{\prime}+k^{\prime \prime}$, and after a minor modification of $\vartheta\left[\begin{array}{l}k^{\prime} \\ k^{\prime \prime}\end{array}\right](z \mid x)$, we define a new series $\vartheta(z, k, x)$, which represents a holomorphic function on the space $H_{n} \times C^{n} \times C^{n}$ whose second factor C^{n} will be regarded as the dual space of the third factor C^{n} in a natural way. This new function $\vartheta(z, k, x)$ substitutes for the classical theta and sometimes has an advantage because of its complex analyticity. For instance, using this function we can explicitly write down a theta function whose divisor is the Poincaré divisor.

1. The dual lattice. Let (E, G) be a pair of n-dimensional C-vector space E and a lattice subgroup G. Assume that the quotient E / G is an abelian variety, or equivalently that there are a C-basis $\left(e_{1}, \cdots, e_{n}\right)$ and an R-basis ($\mathfrak{f}_{1}, \cdots, \mathfrak{f}_{2 n}$) of E such that $\left(f_{1}, \cdots, \mathfrak{f}_{2 n}\right)=\left(e_{1}, \cdots, e_{n}\right)\left(z 1_{n}\right)$ with a matrix z in the Siegel upperhalf space H_{n} and the identity n-matrix 1_{n} (which is sometimes denoted simply by 1), and that G is generated by $\left(\mathrm{e}_{1}, \cdots, \mathrm{e}_{n}\right)(z e)$ with an $(n \times n)$-matrix e having Z-coefficients and $\operatorname{det} e \neq 0$. Under this \boldsymbol{C}-basis, E is identified with \boldsymbol{C}^{n} and \boldsymbol{G} is generated by the column vectors of ($z e$), denoted by $\boldsymbol{G}=\left\langle\begin{array}{ll}z & e\rangle\end{array}\right\rangle$. The \boldsymbol{R}-coordinates $\boldsymbol{x}=\binom{x^{\prime}}{x^{\prime \prime}}, x^{\prime}$ and $x^{\prime \prime} \in \boldsymbol{R}^{n}$, of a point $x \in \boldsymbol{C}^{n}$ under the latter basis are determined by $x=$ ($z 1_{n}$) $\boldsymbol{x}=z x^{\prime}+x^{\prime \prime}$.

The classical theta series $\vartheta\left[\begin{array}{l}k^{\prime} \\ k^{\prime \prime}\end{array}\right](z \mid x)$ is defined by

$$
\vartheta\left[\begin{array}{l}
k^{\prime} \\
k^{\prime \prime}
\end{array}\right](z \mid x)=\sum_{r \in \mathbf{Z}^{n}} \boldsymbol{e}\left(\frac{1}{2}^{t}\left(r+k^{\prime}\right) z\left(r+k^{\prime}\right)+{ }^{t}\left(r+k^{\prime}\right)\left(x+k^{\prime \prime}\right)\right),
$$

where $\left(z, k^{\prime}, k^{\prime \prime}, x\right)$ are variables on $H_{n} \times \boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \times \boldsymbol{C}^{n}$, and for each $s=$ $\left(\begin{array}{ll}z & 1\end{array}\right)\binom{s^{\prime}}{s^{\prime \prime}}, s^{\prime}, s^{\prime \prime} \in \boldsymbol{Z}^{n}$, we have

$$
\vartheta\left[\begin{array}{l}
k^{\prime} \\
k^{\prime \prime}
\end{array}\right](z \mid x+s)=\vartheta\left[\begin{array}{l}
k^{\prime} \\
k^{\prime \prime}
\end{array}\right](z \mid x) e\left(-{ }^{t} s^{\prime} x-\frac{1}{2}{ }^{t} s^{\prime} z s^{\prime}-{ }^{t} k^{\prime \prime} s^{\prime}+{ }^{t} k^{\prime} s^{\prime \prime}\right),
$$

which suggests that $\binom{-k^{\prime \prime}}{k^{\prime}}$ should be regarded as the R-coordinates of a point \mathscr{F} of the dual space $\hat{E}=\operatorname{Hom}_{R}(E, C) / \operatorname{Hom}_{C}(E, C)$ of $E=C^{n}$, which is naturally identified with $\operatorname{Hom}_{R}(E, R)$ by the restriction of the projection

