70. Fourier Coefficients of Certain Eisenstein Series

By Yoshiyuki Kitaoka
Department of Mathematics, School of Science, Nagoya University
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1989)

We fix natural numbers $q \geq 3, k, n \geq 1$ once and for all. For $\gamma, \delta \in$ $M_{n}(Z)$, we write $(\gamma, \delta)=1$ if ($\gamma \delta$) is a lower $n \times 2 n$ submatrix of some element of $S p(n ; \boldsymbol{Z})$, and put $H_{n}:=\left\{\left.z \in M_{n}(C)\right|^{t} z=z, \operatorname{Im} z>0\right\}$. We fix such a pair γ, δ hereafter. We consider Eisenstein series
$E(z, s, k ;(\gamma, \delta)):=\sum \operatorname{det}(c z+d)^{-k} \operatorname{abs}(\operatorname{det}(c z+d))^{-2 s} \quad\left(z \in H_{n}, s \in C\right)$, where (c, d) runs over $G_{n}(q) \backslash\{(c, d) \mid(c, d)=1, c \equiv \gamma, d \equiv \delta \bmod q\}$ and $G_{n}(q)=$ $\left\{a \in G L_{n}(Z) \mid a \equiv 1_{n} \bmod q\right\}$. Our aim is to study Dirichlet series which appear in Fourier coefficients of $E(z, s, k ;(\gamma, \delta))$. We denote by $E^{\prime}(z, s, k ;(\gamma, \delta))$ a partial sum of $E(z, s, k ;(\gamma, \delta))$ with det $c \neq 0$. For a ring R, we denote by $\Lambda_{n}(R)$ the set of all symmetric matrices of degree n with entries in R and put $\Lambda_{n}:=\Lambda_{n}(Z)$. By Λ_{n}^{\prime} we denote the set of all half-integral matrices of degree n, i.e. matrices a such that $2 a \in \Lambda_{n}$ and diagonals of a are integers. Following [3], we put, for $z \in H_{n}$

$$
\sum_{a \in \Lambda_{n}} \operatorname{det}(z+\alpha)^{-\alpha} \operatorname{det}(\bar{z}+a)^{-\beta}=\sum_{h \in \Lambda_{n}^{\prime}} e(\operatorname{tr} h x) \xi(y, h ; \alpha, \beta),
$$

where $x=\operatorname{Re} z, y=\operatorname{Im} z, e(w)$ means $\exp (2 \pi i w)$ and the function ξ is defined by the above and is fully studied in [3]. We have

$$
E^{\prime}(z, s, k ;(\gamma, \delta))=q^{-n(k+2 s)} \sum_{n \in A_{n}^{\prime}} \xi\left(q^{-1} y, h ; s+k, s\right) \zeta(h ; k,(\gamma, \delta) ; s) e(\operatorname{tr} h x / q)
$$

where $x=\operatorname{Re} z, y=\operatorname{Im} z$ and

$$
\zeta(h ; k,(\gamma, \delta) ; s)=\sum_{c} \sum_{a} \operatorname{det}(c)^{-k} \operatorname{abs}(\operatorname{det}(c))^{-2 s} e\left(q^{-1} \operatorname{tr} h c^{-1} d\right) .
$$

where c runs over $G_{n}(q) \backslash\left\{c \in M_{n}(Z) \mid c \equiv \gamma \bmod q\right.$, $\left.\operatorname{det} c \neq 0\right\}$ and d runs over $\left\{d \in M_{n}(Z) \bmod q c \Lambda_{n} \mid(c, d)=1, d \equiv \delta \bmod q\right\}$. Decompose q as $q=\Pi q_{i}$ where q_{i} is a power of a prime p_{i} and for a Dirichlet character χ defined modulo q, we denote by χ_{i} a Dirichlet character defined modulo q_{i} such that $\chi=\prod \chi_{i}$. Then we have

$$
\begin{aligned}
& \zeta(h ; k,(\gamma, \delta) ; s)=2 \varphi(q)^{-1} \sum_{ \zeta (h ; k , (\gamma , \delta) ; s) = 2 \varphi (q) ^ { - 1 } \sum _ {\substack{ \substack {\chi (\underset{\bmod }{ }(\underline{q}) \\
\begin{subarray}{c}{(-1)=(-1) k{ \chi (\underset { \operatorname { m o d } } { } (\underline { q }) \\
\begin{subarray} { c } { (- 1) = (- 1) k } }\end{subarray}} \prod_{p \nmid q} b_{p}\left(\left(p^{k+2 s} \chi(p)\right)^{-1}, h\right)} \\
& \times \prod_{i} b_{p_{i}}\left(\left(p_{i}^{k+2 s}\left(\prod_{j \neq i} \chi_{j}\right)\left(p_{i}\right)\right)^{-1} ; h, \chi,(\gamma, \delta)\right),
\end{aligned}
$$

where φ is the Euler's function and we put, for $h \in \Lambda_{n}^{\prime}$

$$
b_{p}(x, h)=\sum_{r \in \Lambda_{n}\left(\mathbb{Q}_{p}\right) / A_{n}\left(\mathbb{Z}_{p}\right)} x^{\circ \operatorname{ord}_{p}(r)} e(\operatorname{tr} h r),
$$

where $\nu(r)$ is the product of reduced denominators of elementary divisors of r. To define the function $b_{p_{i}}$, we put, for a power Q of a prime $p, h \in \Lambda_{n}^{\prime}$ and a Dirichlet character χ defined modulo Q,

$$
B_{p}(x ; h, \chi ;(\gamma, \delta), Q)=\sum_{c \in U n \backslash(n ; p)} x^{\operatorname{ord} p \operatorname{det} c} \sum_{\substack{d \bmod Q c \Lambda_{n} \\ c^{t} d \in \Lambda_{n}}} e\left(Q^{-1} \operatorname{tr} h c^{-1} d\right) \sum_{g} \chi(\operatorname{det} g),
$$

where g runs over $G L_{n}(\boldsymbol{Z} / Q Z)$ with $c \equiv g \gamma \bmod Q$ and $d \equiv g \delta \bmod Q($ as a

