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70. Fourier Coefficients of Certain Eisenstein Series
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(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1989)

We fix natural numbers ¢>3, k, n>>1 once and for all. For 7, de
M (Z), we write (7, 0)=1 if (70) is a lower n X 2n submatrix of some element
of Sp(n; Z), and put H,:={ze M, (C)|’2=z, Im2z>0}. We fix such a pair
7, 0 hereafter. We consider Eisenstein series

E(z,8,k; (r,0):=>,det(cz+d) *abs(det(cz+d))"* (eH,, seC),
where (¢, d) runs over G, (@)\{(c,D]|(c,d)=1, c=7, d=dmod g} and G,(q)=
{a e GL,(Z)|a=1,mod q}. Our aim is to study Dirichlet series which appear
in Fourier coefficients of E(z,s, k; (r,6)). We denote by E'(z,s, k; (7,0)) a
partial sum of E(z,s, k; (7, 9)) with det ¢£0. For a ring R, we denote by
A,(R) the set of all symmetric matrices of degree » with entries in R and
put 4,:=4,Z). By A, we denote the set of all half-integral matrices of
degree n, i.e. matrices a such that 20 ¢ 4, and diagonals of a are integers.
Following [3], we put, for ze¢ H,,

2. det(z+a) *det(Z+a) f= 3 e(tr ha)é(y, h; «, B),
ned,

acdy
where x =Rez, y=Im z, e(w) means exp (2riw) and the function & is defined
by the above and is fully studied in [3]. We have
E'(z,8,k; (1, 0))=q""** > &(q™'y, h; s+ k, 8)C(h; k, (7, 8) ; s)e(tr ha/ q)

hEA},

where x=Rez, y=Imz and

Ehi ke, (r,8); 8)=2, >, det(c)-" abs (det (¢))**e(q~" tr he'd).

c da

where ¢ runs over G, (Q\{ce M, (Z)|c=7modq, detc+0} and d runs over
{de M, (Z) mod qc4,|(¢, d)=1, d=d mod ¢q}. Decompose q as ¢=1[] q, where
g, is a power of a prime p, and for a Dirichlet character X defined modulo

q, we denote by X; a Dirichlet character defined modulo ¢, such that Xx=|] %,.
Then we have

C(hs Ey (r,0) 5 8)=20(q)"" ; n%q 1}2 b (= Uw))~*, )

x(=1)=(-Dk
X [J bm((zo’{*“(jl;[i XY pN'5 kX, (7, 0)),
where ¢ is the Euler’s function and we put, for 2 e 4,
b (x, h)= > x4 *Me(tr hr),
7€ 4n(Qp)/An(Zp)
where () is the product of reduced denominators of elementary divisors of
r. To define the function b,,, we put, for a power Q of a prime p, he 4,
and a Dirichlet character X defined modulo @,
B(x; hy X5 (7,0), Q)= >, acrdedete S e(Q'tr he'd) 3 X(det g),
g

c€ Un\c(n;p) d mod Qcdp
ctd€dn

where g runs over GL,(Z/QZ) with ¢=gr modQ and d=gimodQ (as a



